def main(): args = parse_args() print('Called with args:') print(args) # Set main gpu # theano.sandbox.cuda.use(args.gpu_id) if args.cfg_files is not None: for cfg_file in args.cfg_files: cfg_from_file(cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) if not args.randomize: np.random.seed(cfg.CONST.RNG_SEED) if args.batch_size is not None: cfg_from_list(['CONST.BATCH_SIZE', args.batch_size]) if args.iter is not None: cfg_from_list(['TRAIN.NUM_ITERATION', args.iter]) if args.save_freq is not None: cfg_from_list(['TRAIN.SAVE_FREQ', args.save_freq]) if args.valid_freq is not None: cfg_from_list(['TRAIN.VALIDATION_FREQ', args.valid_freq]) if args.nan_check_freq is not None: cfg_from_list(['TRAIN.NAN_CHECK_FREQ', args.nan_check_freq]) if args.net_name is not None: cfg_from_list(['NET_NAME', args.net_name]) if args.model_name is not None: cfg_from_list(['CONST.NETWORK_CLASS', args.model_name]) if args.dataset is not None: cfg_from_list(['DATASET', args.dataset]) if args.exp is not None: cfg_from_list(['TEST.EXP_NAME', args.exp]) if args.out_path is not None: cfg_from_list(['DIR.OUT_PATH', args.out_path]) if args.weights is not None: cfg_from_list([ 'CONST.WEIGHTS', args.weights, 'TRAIN.RESUME_TRAIN', True, 'TRAIN.INITIAL_ITERATION', int(args.init_iter) ]) print('Using config:') pprint.pprint(cfg) if not args.test: train_net() else: test_net()
def main(): args = parse_args() print('Called with args:') print(args) # Set main gpu #theano.sandbox.cuda.use(args.gpu_id) #theano.gpuarray.use(args.gpu_id) if args.cfg_files is not None: for cfg_file in args.cfg_files: cfg_from_file(cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) if not args.randomize: np.random.seed(cfg.CONST.RNG_SEED) if args.batch_size is not None: cfg_from_list(['CONST.BATCH_SIZE', args.batch_size]) if args.iter is not None: cfg_from_list(['TRAIN.NUM_ITERATION', args.iter]) if args.net_name is not None: cfg_from_list(['NET_NAME', args.net_name]) if args.model_name is not None: cfg_from_list(['CONST.NETWORK_CLASS', args.model_name]) if args.dataset is not None: cfg_from_list(['DATASET', args.dataset]) if args.exp is not None: cfg_from_list(['TEST.EXP_NAME', args.exp]) if args.out_path is not None: cfg_from_list(['DIR.OUT_PATH', args.out_path]) if args.tb_path is not None: cfg_from_list(['DIR.TB_PATH', args.tb_path]) if args.dyna_dict is not None: cfg_from_list(['CONST.dynamic_dict', args.dyna_dict]) if args.learn_rate is not None: cfg_from_list(['TRAIN.DEFAULT_LEARNING_RATE', args.learn_rate]) if args.weights is not None: cfg_from_list(['CONST.WEIGHTS', args.weights, 'TRAIN.RESUME_TRAIN', True, 'TRAIN.INITIAL_ITERATION', int(args.init_iter)]) print('Using config:') pprint.pprint(cfg) if not args.test: train_net() else: test_net()