コード例 #1
0
    def test(self, test_dir, out_dir):
        for _, data_dict in enumerate(
                self.test_loader.get_testloader(test_dir=test_dir)):
            data_dict['testing'] = True
            out_dict = self.det_net(data_dict)
            meta_list = DCHelper.tolist(data_dict['meta'])
            batch_detections = self.decode(out_dict['loc'], out_dict['conf'],
                                           self.configer, meta_list)
            for i in range(len(meta_list)):
                ori_img_bgr = ImageHelper.read_image(meta_list[i]['img_path'],
                                                     tool='cv2',
                                                     mode='BGR')
                json_dict = self.__get_info_tree(batch_detections[i])
                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('res', 'vis_conf_thre'))
                ImageHelper.save(image_canvas,
                                 save_path=os.path.join(
                                     out_dir, 'vis/{}.png'.format(
                                         meta_list[i]['filename'])))

                Log.info('Json Path: {}'.format(
                    os.path.join(
                        out_dir,
                        'json/{}.json'.format(meta_list[i]['filename']))))
                JsonHelper.save_file(json_dict,
                                     save_path=os.path.join(
                                         out_dir, 'json/{}.json'.format(
                                             meta_list[i]['filename'])))
コード例 #2
0
ファイル: open_pose_test.py プロジェクト: zihua/torchcv
    def __test_img(self, image_path, json_path, raw_path, vis_path):

        Log.info('Image Path: {}'.format(image_path))
        ori_image = ImageHelper.read_image(image_path,
                                           tool=self.configer.get('data', 'image_tool'),
                                           mode=self.configer.get('data', 'input_mode'))

        ori_width, ori_height = ImageHelper.get_size(ori_image)
        ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image, mode=self.configer.get('data', 'input_mode'))
        heatmap_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'heatmap_out')))
        paf_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'paf_out')))
        multiplier = [scale * self.configer.get('test', 'input_size')[1] / ori_height
                      for scale in self.configer.get('test', 'scale_search')]
        stride = self.configer.get('network', 'stride')
        for i, scale in enumerate(multiplier):
            image, border_hw = self._get_blob(ori_image, scale=scale)
            with torch.no_grad():
                paf_out_list, heatmap_out_list = self.pose_net(image)
                paf_out = paf_out_list[-1]
                heatmap_out = heatmap_out_list[-1]

                # extract outputs, resize, and remove padding
                heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose(1, 2, 0)

                heatmap = cv2.resize(heatmap, None, fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
                heatmap = cv2.resize(heatmap[:border_hw[0], :border_hw[1]],
                                     (ori_width, ori_height), interpolation=cv2.INTER_CUBIC)

                paf = paf_out.squeeze(0).cpu().numpy().transpose(1, 2, 0)
                paf = cv2.resize(paf, None, fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
                paf = cv2.resize(paf[:border_hw[0], :border_hw[1]],
                                 (ori_width, ori_height), interpolation=cv2.INTER_CUBIC)

                heatmap_avg = heatmap_avg + heatmap / len(multiplier)
                paf_avg = paf_avg + paf / len(multiplier)

        all_peaks = self.__extract_heatmap_info(heatmap_avg)
        special_k, connection_all = self.__extract_paf_info(ori_img_bgr, paf_avg, all_peaks)
        subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks)
        json_dict = self.__get_info_tree(ori_img_bgr, subset, candidate)

        image_canvas = self.pose_parser.draw_points(ori_img_bgr.copy(), json_dict)
        image_canvas = self.pose_parser.link_points(image_canvas, json_dict)

        ImageHelper.save(image_canvas, vis_path)
        ImageHelper.save(ori_img_bgr, raw_path)
        Log.info('Json Save Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
コード例 #3
0
    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))

        trans = None
        if self.configer.get('dataset') == 'imagenet':
            if self.configer.get('data', 'image_tool') == 'cv2':
                img = Image.fromarray(img)

            trans = transforms.Compose([
                transforms.Scale(256),
                transforms.CenterCrop(224),
            ])

        assert trans is not None
        img = trans(img)

        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))

        inputs = self.blob_helper.make_input(img,
                                             input_size=self.configer.get(
                                                 'test', 'input_size'),
                                             scale=1.0)

        with torch.no_grad():
            outputs = self.cls_net(inputs)

        json_dict = self.__get_info_tree(outputs, image_path)

        image_canvas = self.cls_parser.draw_label(ori_img_bgr.copy(),
                                                  json_dict['label'])
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict
コード例 #4
0
    def __read_json(self, root_dir, json_path):
        item_list = []
        for item in JsonHelper.load_file(json_path):
            img_path = os.path.join(root_dir, item['image_path'])
            if not os.path.exists(img_path) or not ImageHelper.is_img(img_path):
                Log.error('Image Path: {} is Invalid.'.format(img_path))
                exit(1)

            item_list.append((img_path, '.'.join(item['image_path'].split('.')[:-1])))

        Log.info('There are {} images..'.format(len(item_list)))
        return item_list
コード例 #5
0
ファイル: default_cpm_dataset.py プロジェクト: zihua/torchcv
    def __read_json_file(self, json_file):
        """
            filename: JSON file

            return: three list: key_points list, centers list and scales list.
        """
        json_dict = JsonHelper.load_file(json_file)
        kpts = list()
        bboxes = list()

        for object in json_dict['objects']:
            kpts.append(object['keypoints'])
            if 'bbox' in object:
                bboxes.append(object['bbox'])

        return np.array(kpts).astype(np.float32), np.array(bboxes).astype(
            np.float32)
コード例 #6
0
ファイル: default_dataset.py プロジェクト: zihua/torchcv
    def __read_json_file(self, json_file):
        """
            filename: JSON file

            return: three list: key_points list, centers list and scales list.
        """
        json_dict = JsonHelper.load_file(json_file)

        labels = list()
        bboxes = list()
        polygons = list()

        for object in json_dict['objects']:
            if 'difficult' in object and object['difficult'] and not self.configer.get('data', 'keep_difficult'):
                continue

            labels.append(object['label'])
            bboxes.append(object['bbox'])
            polygons.append(object['segm'])

        return np.array(labels), np.array(bboxes).astype(np.float32), polygons