def test(test_loader, network, C_out): test_top1, test_top5 = AverageMeter(), AverageMeter() network.eval() for X, Y in test_loader: test_inputs, test_targets = X.cuda(), Y.cuda() output = network(test_inputs) test_prec1, test_prec5 = obtain_accuracy(output.data, test_targets.data, topk=(1, min(5, C_out))) test_top1.update(test_prec1.item(), test_inputs.size(0)) test_top5.update(test_prec5.item(), test_inputs.size(0)) print("***TEST result***" + "accuracy@1 : {:.2f}%, accuracy@5 : {:.2f}%".format( test_top1.avg, test_top5.avg))
def test(test_loader, network, C_out): test_top1, test_top5 = AverageMeter(), AverageMeter() network.eval() with torch.no_grad(): for X, Y in test_loader: test_inputs, test_targets = X.cuda(), Y.cuda() output = network(test_inputs) import numpy as np # print(np.argmax(np.array(output.data.cpu()), axis=1)) # print(test_targets.data) test_prec1, test_prec5 = obtain_accuracy(output.data, test_targets.data, topk=(1, min(5, C_out))) test_top1.update(test_prec1.item(), test_inputs.size(0)) test_top5.update(test_prec5.item(), test_inputs.size(0)) return test_top1.avg, test_top5.avg
def train(data_loader, network, criterion, optimizer, config): network.train() losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() for step, (X, Y, X1, Y1) in enumerate(data_loader): inputs, targets = X.cuda(), Y.cuda() optimizer.zero_grad() output = network(inputs) loss = criterion(output, targets) loss.backward() optimizer.step() prec1, prec5 = obtain_accuracy(output.data, targets.data, topk=(1, min(5, config.C_out))) losses.update(loss.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) return losses.avg, top1.avg, top5.avg
def train(xargs): lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) assert (torch.cuda.is_available(), 'CUDA is not available.') # start cudnn cudnn.enabled = True # make each conv is the same cudnn.benchmark = False # make sure the same seed has the same result cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(xargs) # get original data(cifar10/cifar100/uci) train_data, valid_data, xshape, class_num = get_dataset( xargs.dataset, xargs.data_path, -1) logger.log('{:}Train Config{:}'.format("-" * 50, "-" * 50)) opt_config = load_config( xargs.opt_config, { 'class_num': class_num, 'xshape': xshape, 'batch_size': xargs.batch_size, 'epochs': xargs.epochs, 'LR': xargs.opt_learning_rate }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'config/', opt_config.batch_size, xargs.workers) logger.log('dataset: {:} Search-Loader-length={:}, batch size={:}'.format( xargs.dataset, len(search_loader), opt_config.batch_size)) logger.log('{:}Arch Config{:}'.format("-" * 50, "-" * 50)) arch_config = load_config( xargs.arch_config, { 'class_num': class_num, 'space': HAPT_SPACE, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, logger) if xargs.dataset == 'HAPT': search_model = DNNModel(config=arch_config, logger=logger) elif xargs.dataset in ('cifar10', 'cifar100'): search_model = DNNModel(config=arch_config, logger=logger) else: raise NameError( "dataset must be in \"HAPT\", \"cifar100\", \"cifar100\"") if xargs.evaluate == 'test': search_model.load_state_dict( torch.load(logger.path('best'))['network']) network = search_model.cuda() test_loader = valid_loader test(test_loader, network, arch_config.C_out) return # logger.log('search-model :\n{:}'.format(search_model)) logger.log('{:}model-config{:}\n{:}'.format("-" * 50, "-" * 50, arch_config)) if opt_config.criterion == 'cross_entropy': criterion = nn.CrossEntropyLoss() else: raise NameError('unknown loss function {:}'.format( opt_config.criterion)) # criterion = nn.MSELoss() w_optimizer = torch.optim.SGD(params=search_model.get_weights(), lr=opt_config.LR, weight_decay=opt_config.w_decay) w_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer=w_optimizer, T_max=opt_config.epochs, eta_min=opt_config.eta_min) a_optimizer = torch.optim.Adam(params=search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=opt_config.a_decay) logger.log('{:}w-optimizer{:}\n{:}'.format("-" * 50, "-" * 50, w_optimizer)) logger.log('{:}a-optimizer{:}\n{:}'.format("-" * 50, "-" * 50, a_optimizer)) logger.log('{:}w-scheduler{:}\n{:}'.format("-" * 50, "-" * 50, w_scheduler)) logger.log('{:}criterion{:}\n{:}'.format("-" * 50, "-" * 50, criterion)) flop, param = get_model_infos(search_model, xshape) logger.log('FLOP = {:.6f} M, Params = {:.6f} MB'.format(flop, param)) logger.log('search-space [{:} ops] : {:}'.format(len(HAPT_SPACE), HAPT_SPACE)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') # network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() network = search_model.cuda() criterion = criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] network.load_state_dict(checkpoint['network']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, \ {-1: network.genotype(xargs.save_dir + xargs.genotype_file)} start_time, epoch_time = time.time(), AverageMeter() total_epoch = opt_config.epochs for epoch in range(start_epoch, total_epoch): w_scheduler.step(epoch=epoch) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) network.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)) logger.log('\n[Search the {:}-th epoch] tau={:.2f} {:}'.format( epoch_str, network.get_tau(), need_time)) epoch_start = time.time() base_losses, base_top1, base_top5, arch_losses, arch_top1, arch_top5 = \ search(arch_config, search_loader, network, criterion, w_optimizer, a_optimizer, xargs.print_frequency, epoch_str, logger) epoch_time.update(time.time() - epoch_start) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, base_losses, base_top1, base_top5)) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, arch_losses, arch_top1, arch_top5)) valid_accuracies[epoch] = arch_top1 if arch_top1 > valid_accuracies['best']: valid_accuracies['best'] = arch_top1 genotypes['best'] = network.genotype(xargs.save_dir + xargs.genotype_file) find_best = True else: find_best = False genotypes[epoch] = network.genotype(xargs.save_dir + xargs.genotype_file) logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'network': network.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, arch_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log('{:}'.format(network.show_alphas())) logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log('GDAS : run {:} epochs, use time : {:}.'.format( total_epoch, convert_secs2time(time.time() - start_time, True))) logger.log('best geno is {:}.'.format(genotypes['best']))
def search(arch_config, data_loader, network, criterion, w_optimizer, a_optimizer, print_frequency, epoch_str, logger): base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter( ), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter( ), AverageMeter() network.train() for step, (X, Y, X1, Y1) in enumerate(data_loader): base_inputs, base_targets = X.cuda(), Y.cuda() arch_inputs, arch_targets = X1.cuda(), Y1.cuda() # update the weights w_optimizer.zero_grad() output = network(base_inputs) base_loss = criterion(output, base_targets) base_loss.backward() clip_grad_norm_(network.parameters(), 5) w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( output.data, base_targets.data, topk=(1, min(5, arch_config.C_out))) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight a_optimizer.zero_grad() output = network(arch_inputs) arch_loss = criterion(output, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy( output.data, arch_targets.data, topk=(1, min(5, arch_config.C_out))) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) if step % print_frequency == 0 or step + 1 == len(data_loader): str1 = "SEARCHING***" + "[{:}][{:}/{:}]".format( epoch_str, step, len(data_loader)) str3 = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5) str4 = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format( loss=arch_losses, top1=arch_top1, top5=arch_top5) logger.log(str1 + ' ' + str3 + ' ' + str4) return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
def train(xargs): lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) assert (torch.cuda.is_available(), 'CUDA is not available.') # start cudnn cudnn.enabled = True # make each conv is the same cudnn.benchmark = False # make sure the same seed has the same result cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(xargs) # get original data train_data, valid_data, xshape, class_num = get_dataset( xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'config/', config.batch_size, xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format( xargs.dataset, len(search_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = DARTS_SPACE model_config = load_config( xargs.model_config, { 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) search_model = get_cell_based_tiny_net(model_config) # logger.log('search-model :\n{:}'.format(search_model)) # logger.log('model-config : {:}'.format(model_config)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) # logger.log('w-optimizer : {:}'.format(w_optimizer)) # logger.log('a-optimizer : {:}'.format(a_optimizer)) # logger.log('w-scheduler : {:}'.format(w_scheduler)) # logger.log('criterion : {:}'.format(criterion)) # flop, param = get_model_infos(search_model, xshape) # logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space)) if xargs.arch_nas_dataset is None: api = None else: pass # api = API(xargs.arch_nas_dataset) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') # network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() network = search_model if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, { 'best': -1 }, { -1: search_model.genotype() } start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) search_model.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)) logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format( epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr()))) search_w_loss, search_w_top1, search_w_top5, valid_a_loss, valid_a_top1, valid_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies['best']: valid_accuracies['best'] = valid_a_top1 genotypes['best'] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) # if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch]))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log( 'GDAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( total_epoch, search_time.sum, genotypes[total_epoch - 1])) # if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[total_epoch - 1]))) logger.close()
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter( ), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter( ), AverageMeter() network.train() end = time.time() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): scheduler.update(None, 1.0 * step / len(xloader)) # base_targets = base_targets.cuda(non_blocking=True) # arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # update the weights w_optimizer.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() torch.nn.utils.clip_grad_norm_(network.parameters(), 5) w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight a_optimizer.zero_grad() _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = '*SEARCH* ' + time_string( ) + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format( batch_time=batch_time, data_time=data_time) Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format( loss=base_losses, top1=base_top1, top5=base_top5) Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format( loss=arch_losses, top1=arch_top1, top5=arch_top5) logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg