def __getitem__(self, index): img_path = self.filelist[index] img = convert_to_rgb(io.imread(img_path)) img = resize_max_length(img, 240) img = img[:, :, 0].astype(np.float32) img /= 255.0 return img
def read_img(img_path, scale): img = convert_to_rgb(io.imread(img_path)) oh, ow = img.shape[:2] if isinstance(scale, int): img = resize_max_length(img, scale) elif isinstance(scale, tuple): img = cv2.resize(img, scale) h, w = img.shape[:2] scale_h, scale_w = h / oh, w / ow return img, scale_h, scale_w
def __getitem__(self, index): img_path = self.img_paths[index] img = io.imread(img_path) img = convert_to_rgb(img) # img0 = img img0 = resize_max_length(img, 640) img1, H = homography_adaption(img0, angle=self.angle) pix_pos0, pix_pos1 = sample_ground_truth(img0, H) # img = draw_corspd_region(img0, img1, H) # import matplotlib.pyplot as plt # plt.imshow(img) # plt.show() if self.transforms is not None: img0, pix_pos0 = self.transforms(img0, pix_pos0) img1, pix_pos1 = self.transforms(img1, pix_pos1) pix_pos2 = sample_negative(img1, pix_pos1) img0 = torch.tensor(img0).permute(2, 0, 1).float() img1 = torch.tensor(img1).permute(2, 0, 1).float() # img = draw_triplet(img0, pix_pos0, img1, pix_pos1, img1, pix_pos2) # import matplotlib.pyplot as plt # plt.imshow(img) # plt.show() # return pix_pos0 = torch.tensor(pix_pos0).float() pix_pos1 = torch.tensor(pix_pos1).float() target = dict( kps0=pix_pos0, kps1=pix_pos1, kps2=pix_pos2, H=H, ) return img0, img1, target, index