コード例 #1
0
    def collect_real_set_info(self):
        database=[]
        projector=Projector()
        modeldb=LineModModelDB()

        transformer=PoseTransformer(class_type=self.cls_name)

        img_num=len(os.listdir(os.path.join(self.linemod_dir,self.rgb_dir)))
        print(img_num)
        for k in range(img_num):
            data={}
            data['rgb_pth']=os.path.join(self.rgb_dir,'color_{:05}.png'.format(k))
            data['dpt_pth']=os.path.join(self.mask_dir,'{}.png'.format(k))

            pose=self.read_pose(os.path.join(self.rt_dir,'info_{:05}.txt'.format(k)))
            if len(pose)==0:
                # os.system('cp {} ./{:05}.png'.format(os.path.join(cfg.OCCLUSION_LINEMOD,data['rgb_pth']),k))
                continue
            data['RT']=transformer.occlusion_pose_to_blender_pose(pose)
            data['cls_typ']=self.cls_name
            data['rnd_typ']='real'
            data['corners']=projector.project(modeldb.get_corners_3d(self.cls_name),data['RT'],'linemod')
            data['farthest']=projector.project(modeldb.get_farthest_3d(self.cls_name),data['RT'],'linemod')
            for num in [4,12,16,20]:
                data['farthest{}'.format(num)]=projector.project(modeldb.get_farthest_3d(self.cls_name,num),data['RT'],'linemod')
            data['center']=projector.project(modeldb.get_centers_3d(self.cls_name)[None,:],data['RT'],'linemod')
            data['small_bbox'] = projector.project(modeldb.get_small_bbox(self.cls_name), data['RT'], 'linemod')
            axis_direct=np.concatenate([np.identity(3), np.zeros([3, 1])], 1).astype(np.float32)
            data['van_pts']=projector.project_h(axis_direct, data['RT'], 'blender')
            database.append(data)

        save_pickle(database,self.real_pkl)
        return database
コード例 #2
0
    def collect_real_set_info(self):     # linemod standard
        database=[]
        projector=Projector()
        modeldb=LineModModelDB()
        img_num=len(os.listdir(os.path.join(self.linemod_dir,self.rgb_dir)))
        for k in range(img_num):
            data={}
            data['rgb_pth']=os.path.join(self.rgb_dir, '{:06}.jpg'.format(k))
            data['dpt_pth']=os.path.join(self.mask_dir, '{:04}.png'.format(k))
            pose=read_pose(os.path.join(self.rt_dir, 'rot{}.rot'.format(k)),
                           os.path.join(self.rt_dir, 'tra{}.tra'.format(k)))
            pose_transformer = PoseTransformer(class_type=self.cls_name)
            data['RT'] = pose_transformer.orig_pose_to_blender_pose(pose).astype(np.float32)
            data['cls_typ']=self.cls_name
            data['rnd_typ']='real'
            data['corners']=projector.project(modeldb.get_corners_3d(self.cls_name),data['RT'],'linemod')
            data['farthest']=projector.project(modeldb.get_farthest_3d(self.cls_name),data['RT'],'linemod')
            for num in [4,12,16,20]:
                data['farthest{}'.format(num)]=projector.project(modeldb.get_farthest_3d(self.cls_name,num),data['RT'],'linemod')
            data['center']=projector.project(modeldb.get_centers_3d(self.cls_name)[None, :],data['RT'],'linemod')
            data['small_bbox'] = projector.project(modeldb.get_small_bbox(self.cls_name), data['RT'], 'linemod')
            axis_direct=np.concatenate([np.identity(3), np.zeros([3, 1])], 1).astype(np.float32)
            data['van_pts']=projector.project_h(axis_direct, data['RT'], 'linemod')
            database.append(data)

        save_pickle(database,self.set_pkl)
        return database
コード例 #3
0
 def read_benchvise_pose(index):
     orig_pose_dir_path = os.path.join(cfg.LINEMOD_ORIG, 'benchvise/data')
     pose = read_pose(
         os.path.join(orig_pose_dir_path, 'rot{}.rot'.format(index)),
         os.path.join(orig_pose_dir_path, 'tra{}.tra'.format(index)))
     pose_transformer = PoseTransformer(class_type='benchvise')
     return pose_transformer.orig_pose_to_blender_pose(pose).astype(
         np.float32)
コード例 #4
0
    def make_truncated_linemod_dataset():
        for cls_name in cfg.linemod_cls_names:
            print(cls_name)
            linemod_dir = cfg.LINEMOD
            rgb_dir = '{}/JPEGImages'.format(cls_name)
            mask_dir = '{}/mask'.format(cls_name)
            rt_dir = os.path.join(cfg.DATA_DIR, 'LINEMOD_ORIG', cls_name,
                                  'data')

            if not os.path.exists(
                    os.path.join(linemod_dir, 'truncated', cls_name)):
                os.mkdir(os.path.join(linemod_dir, 'truncated', cls_name))

            projector = Projector()
            img_num = len(os.listdir(os.path.join(linemod_dir, rgb_dir)))
            print(img_num)
            for k in range(img_num):
                rgb = imread(
                    os.path.join(linemod_dir, rgb_dir, '{:06}.jpg'.format(k)))
                msk = imread(
                    os.path.join(linemod_dir, mask_dir, '{:04}.png'.format(k)))
                msk = (np.sum(msk, 2) > 0).astype(np.uint8)

                before = np.sum(msk)
                count = 0
                while True:
                    rgb_new, msk_new, hbeg, wbeg = LineModImageDB.crop_instance(
                        rgb, msk, 256)
                    after = np.sum(msk_new)
                    count += 1
                    if after / before >= 0.2 or count > 50:
                        rgb, msk = rgb_new, msk_new
                        break

                imsave(
                    os.path.join(linemod_dir, 'truncated', cls_name,
                                 '{:06}_rgb.jpg'.format(k)), rgb)
                imsave(
                    os.path.join(linemod_dir, 'truncated', cls_name,
                                 '{:04}_msk.png'.format(k)), msk)

                pose = read_pose(os.path.join(rt_dir, 'rot{}.rot'.format(k)),
                                 os.path.join(rt_dir, 'tra{}.tra'.format(k)))
                pose_transformer = PoseTransformer(class_type=cls_name)
                pose = pose_transformer.orig_pose_to_blender_pose(pose).astype(
                    np.float32)

                K = projector.intrinsic_matrix['linemod'].copy()
                K[0, 2] += wbeg
                K[1, 2] += hbeg

                save_pickle([pose, K],
                            os.path.join(linemod_dir, 'truncated', cls_name,
                                         '{:06}_info.pkl'.format(k)))
                if k % 500 == 0: print(k)
コード例 #5
0
    def collect_real_set_info(self):
        '''
        pvnet 的数据集linemod有做更改,  cat.ply 与原始的linemod中的cat.ply,有模型偏移和旋转,
        所以 原始数据集中的pose真值,需要 简单变换,就是这边数据集的 pose 

        会这样问了,既然图片数据集 这是没有改变的,怎么RT改变呢
        因为 这边提的3d特征是 新的model上取的,所以计算RT的时候,  RT要变的


        pose_real.pkl 
        '''

        database = []
        projector = Projector()
        modeldb = LineModModelDB()
        img_num = len(os.listdir(os.path.join(self.linemod_dir, self.rgb_dir)))
        for k in range(img_num):
            data = {}
            data['rgb_pth'] = os.path.join(self.rgb_dir, '{:06}.jpg'.format(k))
            data['dpt_pth'] = os.path.join(self.mask_dir,
                                           '{:04}.png'.format(k))
            pose = read_pose(os.path.join(self.rt_dir, 'rot{}.rot'.format(k)),
                             os.path.join(self.rt_dir, 'tra{}.tra'.format(k)))
            pose_transformer = PoseTransformer(class_type=self.cls_name)

            data['RT'] = pose_transformer.orig_pose_to_blender_pose(
                pose).astype(np.float32)

            data['cls_typ'] = self.cls_name
            data['rnd_typ'] = 'real'
            data['corners'] = projector.project(
                modeldb.get_corners_3d(self.cls_name), data['RT'], 'linemod')
            data['farthest'] = projector.project(
                modeldb.get_farthest_3d(self.cls_name), data['RT'], 'linemod')
            for num in [4, 12, 16, 20]:
                data['farthest{}'.format(num)] = projector.project(
                    modeldb.get_farthest_3d(self.cls_name, num), data['RT'],
                    'linemod')
            data['center'] = projector.project(
                modeldb.get_centers_3d(self.cls_name)[None, :], data['RT'],
                'linemod')
            data['small_bbox'] = projector.project(
                modeldb.get_small_bbox(self.cls_name), data['RT'], 'linemod')
            axis_direct = np.concatenate(
                [np.identity(3), np.zeros([3, 1])], 1).astype(np.float32)
            data['van_pts'] = projector.project_h(axis_direct, data['RT'],
                                                  'linemod')
            database.append(data)

        save_pickle(database, self.real_pkl)
        return database
コード例 #6
0
ファイル: render_utils.py プロジェクト: hz-ants/pv-net
    def get_plane_height(self):
        if os.path.exists(self.plane_height_path):
            plane_height = read_pickle(self.plane_height_path)
        else:
            plane_height = {}

        if self.class_type in plane_height:
            return plane_height[self.class_type]
        else:
            pose_transformer = PoseTransformer(self.class_type)
            model = pose_transformer.get_blender_model()
            height = np.min(model[:, -1])
            plane_height[self.class_type] = height
            save_pickle(plane_height, self.plane_height_path)
            return height
コード例 #7
0
ファイル: render_utils.py プロジェクト: hz-ants/pv-net
    def __init__(self, class_type):
        self.class_type = class_type
        self.mask_path = os.path.join(cfg.LINEMOD,
                                      '{}/mask/*.png'.format(class_type))
        self.dir_path = os.path.join(cfg.LINEMOD_ORIG,
                                     '{}/data'.format(class_type))

        dataset_pose_dir_path = os.path.join(cfg.DATA_DIR, 'dataset_poses')
        os.system('mkdir -p {}'.format(dataset_pose_dir_path))
        self.dataset_poses_path = os.path.join(
            dataset_pose_dir_path, '{}_poses.npy'.format(class_type))
        blender_pose_dir_path = os.path.join(cfg.DATA_DIR, 'blender_poses')
        os.system('mkdir -p {}'.format(blender_pose_dir_path))
        self.blender_poses_path = os.path.join(
            blender_pose_dir_path, '{}_poses.npy'.format(class_type))
        os.system('mkdir -p {}'.format(blender_pose_dir_path))

        self.pose_transformer = PoseTransformer(class_type)
コード例 #8
0
ファイル: render_utils.py プロジェクト: hz-ants/pv-net
class DataStatistics(object):
    # world_to_camera_pose = np.array([[-1.19209304e-07,   1.00000000e+00,  -2.98023188e-08, 1.19209304e-07],
    #                                  [-8.94069672e-08,   2.22044605e-16,  -1.00000000e+00, 8.94069672e-08],
    #                                  [-1.00000000e+00,  -8.94069672e-08,   1.19209304e-07, 1.00000000e+00]])
    world_to_camera_pose = np.array(
        [[-1.00000024e+00, -8.74227979e-08, -5.02429621e-15, 8.74227979e-08],
         [5.02429621e-15, 1.34358856e-07, -1.00000012e+00, -1.34358856e-07],
         [8.74227979e-08, -1.00000012e+00, 1.34358856e-07, 1.00000012e+00]])

    def __init__(self, class_type):
        self.class_type = class_type
        self.mask_path = os.path.join(cfg.LINEMOD,
                                      '{}/mask/*.png'.format(class_type))
        self.dir_path = os.path.join(cfg.LINEMOD_ORIG,
                                     '{}/data'.format(class_type))

        dataset_pose_dir_path = os.path.join(cfg.DATA_DIR, 'dataset_poses')
        os.system('mkdir -p {}'.format(dataset_pose_dir_path))
        self.dataset_poses_path = os.path.join(
            dataset_pose_dir_path, '{}_poses.npy'.format(class_type))
        blender_pose_dir_path = os.path.join(cfg.DATA_DIR, 'blender_poses')
        os.system('mkdir -p {}'.format(blender_pose_dir_path))
        self.blender_poses_path = os.path.join(
            blender_pose_dir_path, '{}_poses.npy'.format(class_type))
        os.system('mkdir -p {}'.format(blender_pose_dir_path))

        self.pose_transformer = PoseTransformer(class_type)

    def get_proper_crop_size(self):
        mask_paths = glob.glob(self.mask_path)
        widths = []
        heights = []

        for mask_path in mask_paths:
            mask = Image.open(mask_path).convert('1')
            mask = np.array(mask).astype(np.int32)
            row_col = np.argwhere(mask == 1)
            min_row, max_row = np.min(row_col[:, 0]), np.max(row_col[:, 0])
            min_col, max_col = np.min(row_col[:, 1]), np.max(row_col[:, 1])
            width = max_col - min_col
            height = max_row - min_row
            widths.append(width)
            heights.append(height)

        widths = np.array(widths)
        heights = np.array(heights)
        print('min width: {}, max width: {}'.format(np.min(widths),
                                                    np.max(widths)))
        print('min height: {}, max height: {}'.format(np.min(heights),
                                                      np.max(heights)))

    def get_quat_translation(self, object_to_camera_pose):
        object_to_camera_pose = np.append(object_to_camera_pose,
                                          [[0, 0, 0, 1]],
                                          axis=0)
        world_to_camera_pose = np.append(self.world_to_camera_pose,
                                         [[0, 0, 0, 1]],
                                         axis=0)
        object_to_world_pose = np.dot(np.linalg.inv(world_to_camera_pose),
                                      object_to_camera_pose)
        quat = mat2quat(object_to_world_pose[:3, :3])
        translation = object_to_world_pose[:3, 3]
        return quat, translation

    def get_dataset_poses(self):
        if os.path.exists(self.dataset_poses_path):
            poses = np.load(self.dataset_poses_path)
            return poses[:, :3], poses[:, 3:]

        eulers = []
        translations = []
        train_set = np.loadtxt(
            os.path.join(cfg.LINEMOD,
                         '{}/training_range.txt'.format(self.class_type)),
            np.int32)
        for idx in train_set:
            rot_path = os.path.join(self.dir_path, 'rot{}.rot'.format(idx))
            tra_path = os.path.join(self.dir_path, 'tra{}.tra'.format(idx))
            pose = read_pose(rot_path, tra_path)
            euler = self.pose_transformer.orig_pose_to_blender_euler(pose)
            eulers.append(euler)
            translations.append(pose[:, 3])

        eulers = np.array(eulers)
        translations = np.array(translations)
        np.save(self.dataset_poses_path,
                np.concatenate([eulers, translations], axis=-1))

        return eulers, translations

    def sample_sphere(self, num_samples):
        """ sample angles from the sphere
        reference: https://zhuanlan.zhihu.com/p/25988652?group_id=828963677192491008
        """
        flat_objects = [
            '037_scissors', '051_large_clamp', '052_extra_large_clamp'
        ]
        if self.class_type in flat_objects:
            begin_elevation = 30
        else:
            begin_elevation = 0
        ratio = (begin_elevation + 90) / 180
        num_points = int(num_samples // (1 - ratio))
        phi = (np.sqrt(5) - 1.0) / 2.
        azimuths = []
        elevations = []
        for n in range(num_points - num_samples, num_points):
            z = 2. * n / num_points - 1.
            azimuths.append(np.rad2deg(2 * np.pi * n * phi % (2 * np.pi)))
            elevations.append(np.rad2deg(np.arcsin(z)))
        return np.array(azimuths), np.array(elevations)

    def sample_poses(self):
        eulers, translations = self.get_dataset_poses()
        num_samples = cfg.NUM_SYN
        azimuths, elevations = self.sample_sphere(num_samples)
        euler_sampler = stats.gaussian_kde(eulers.T)
        eulers = euler_sampler.resample(num_samples).T
        eulers[:, 0] = azimuths
        eulers[:, 1] = elevations
        translation_sampler = stats.gaussian_kde(translations.T)
        translations = translation_sampler.resample(num_samples).T
        np.save(self.blender_poses_path,
                np.concatenate([eulers, translations], axis=-1))