def test(model_path): test_args = TestOptions().parse() test_args.thread = 0 test_args.batchsize = 1 merge_cfg_from_file(test_args) data_loader = CustomerDataLoader(test_args) test_datasize = len(data_loader) logger.info('{:>15}: {:<30}'.format('test_data_size', test_datasize)) # load model model = MetricDepthModel() model.eval() test_args.load_ckpt = model_path # load checkpoint if test_args.load_ckpt: load_ckpt(test_args, model) model.cuda() # model = torch.nn.DataParallel(model) # test smoothed_absRel = SmoothedValue(test_datasize) smoothed_rms = SmoothedValue(test_datasize) smoothed_logRms = SmoothedValue(test_datasize) smoothed_squaRel = SmoothedValue(test_datasize) smoothed_silog = SmoothedValue(test_datasize) smoothed_silog2 = SmoothedValue(test_datasize) smoothed_log10 = SmoothedValue(test_datasize) smoothed_delta1 = SmoothedValue(test_datasize) smoothed_delta2 = SmoothedValue(test_datasize) smoothed_delta3 = SmoothedValue(test_datasize) smoothed_whdr = SmoothedValue(test_datasize) smoothed_criteria = { 'err_absRel': smoothed_absRel, 'err_squaRel': smoothed_squaRel, 'err_rms': smoothed_rms, 'err_silog': smoothed_silog, 'err_logRms': smoothed_logRms, 'err_silog2': smoothed_silog2, 'err_delta1': smoothed_delta1, 'err_delta2': smoothed_delta2, 'err_delta3': smoothed_delta3, 'err_log10': smoothed_log10, 'err_whdr': smoothed_whdr } for i, data in enumerate(data_loader): out = model.inference(data) pred_depth = torch.squeeze(out['b_fake']) img_path = data['A_paths'] invalid_side = data['invalid_side'][0] pred_depth = pred_depth[invalid_side[0]:pred_depth.size(0) - invalid_side[1], :] pred_depth = pred_depth / data['ratio'].cuda() # scale the depth pred_depth = resize_image(pred_depth, torch.squeeze(data['B_raw']).shape) smoothed_criteria = evaluate_err(pred_depth, data['B_raw'], smoothed_criteria, mask=(45, 471, 41, 601), scale=10.) # save images model_name = test_args.load_ckpt.split('/')[-1].split('.')[0] image_dir = os.path.join(cfg.ROOT_DIR, './evaluation', cfg.MODEL.ENCODER, model_name) if not os.path.exists(image_dir): os.makedirs(image_dir) img_name = img_path[0].split('/')[-1] #plt.imsave(os.path.join(image_dir, 'd_' + img_name), pred_depth, cmap='rainbow') #cv2.imwrite(os.path.join(image_dir, 'rgb_' + img_name), data['A_raw'].numpy().squeeze()) # print('processing (%04d)-th image... %s' % (i, img_path)) # print("###############absREL ERROR: %f", smoothed_criteria['err_absRel'].GetGlobalAverageValue()) # print("###############silog ERROR: %f", np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() - ( # smoothed_criteria['err_silog'].GetGlobalAverageValue()) ** 2)) # print("###############log10 ERROR: %f", smoothed_criteria['err_log10'].GetGlobalAverageValue()) # print("###############RMS ERROR: %f", np.sqrt(smoothed_criteria['err_rms'].GetGlobalAverageValue())) # print("###############delta_1 ERROR: %f", smoothed_criteria['err_delta1'].GetGlobalAverageValue()) # print("###############delta_2 ERROR: %f", smoothed_criteria['err_delta2'].GetGlobalAverageValue()) # print("###############delta_3 ERROR: %f", smoothed_criteria['err_delta3'].GetGlobalAverageValue()) # print("###############squaRel ERROR: %f", smoothed_criteria['err_squaRel'].GetGlobalAverageValue()) # print("###############logRms ERROR: %f", np.sqrt(smoothed_criteria['err_logRms'].GetGlobalAverageValue())) f.write("tested model:" + model_path) f.write('\n') f.write("###############absREL ERROR:" + str(smoothed_criteria['err_absRel'].GetGlobalAverageValue())) f.write('\n') f.write("###############silog ERROR:" + str( np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() - (smoothed_criteria['err_silog'].GetGlobalAverageValue())**2))) f.write('\n') f.write("###############log10 ERROR:" + str(smoothed_criteria['err_log10'].GetGlobalAverageValue())) f.write('\n') f.write("###############RMS ERROR:" + str(np.sqrt(smoothed_criteria['err_rms'].GetGlobalAverageValue()))) f.write('\n') f.write("###############delta_1 ERROR:" + str(smoothed_criteria['err_delta1'].GetGlobalAverageValue())) f.write('\n') f.write("###############delta_2 ERROR:" + str(smoothed_criteria['err_delta2'].GetGlobalAverageValue())) f.write('\n') f.write("###############delta_3 ERROR:" + str(smoothed_criteria['err_delta3'].GetGlobalAverageValue())) f.write('\n') f.write("###############squaRel ERROR:" + str(smoothed_criteria['err_squaRel'].GetGlobalAverageValue())) f.write('\n') f.write( "###############logRms ERROR:" + str(np.sqrt(smoothed_criteria['err_logRms'].GetGlobalAverageValue()))) f.write('\n') f.write( '-----------------------------------------------------------------------------' ) f.write('\n')
'err_logRms': smoothed_logRms, 'err_silog2': smoothed_silog2, 'err_delta1': smoothed_delta1, 'err_delta2': smoothed_delta2, 'err_delta3': smoothed_delta3, 'err_log10': smoothed_log10 } for i, data in enumerate(data_loader): out = model.module.inference_kitti(data) pred_depth = np.squeeze(out['b_fake']) img_path = data['A_paths'] if len(data['B_raw'].shape) != 2: smoothed_criteria = evaluate_err(pred_depth, data['B_raw'], smoothed_criteria, scale=80.) print('processing (%04d)-th image... %s' % (i, img_path)) print(smoothed_criteria['err_absRel'].GetGlobalAverageValue()) #save_images(data, pred_depth, scale=256.*80.) if len(data['B_raw'].shape) != 2: print("###############absREL ERROR: %f", smoothed_criteria['err_absRel'].GetGlobalAverageValue()) print( "###############silog ERROR: %f", np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() - ( smoothed_criteria['err_silog'].GetGlobalAverageValue())**2)) print("###############log10 ERROR: %f", smoothed_criteria['err_log10'].GetGlobalAverageValue()) print("###############RMS ERROR: %f",
'err_whdr': smoothed_whdr } for i, data in enumerate(data_loader): out = model.module.inference(data) pred_depth = torch.squeeze(out['b_fake']) img_path = data['A_paths'] invalid_side = data['invalid_side'][0] pred_depth = pred_depth[invalid_side[0]:pred_depth.size(0) - invalid_side[1], :] pred_depth = pred_depth / data['ratio'].cuda() # scale the depth pred_depth = resize_image(pred_depth, torch.squeeze(data['B_raw']).shape) smoothed_criteria = evaluate_err(pred_depth, data['B_raw'], smoothed_criteria, mask=(45, 471, 41, 601), scale=10.) # save images model_name = test_args.load_ckpt.split('/')[-1].split('.')[0] image_dir = os.path.join(cfg.ROOT_DIR, './evaluation', cfg.MODEL.ENCODER, model_name) if not os.path.exists(image_dir): os.makedirs(image_dir) img_name = img_path[0].split('/')[-1] #plt.imsave(os.path.join(image_dir, 'd_' + img_name), pred_depth, cmap='rainbow') #cv2.imwrite(os.path.join(image_dir, 'rgb_' + img_name), data['A_raw'].numpy().squeeze()) print('processing (%04d)-th image... %s' % (i, img_path))
bg_smoothed_silog2 = SmoothedValue(test_datasize) bg_smoothed_log10 = SmoothedValue(test_datasize) bg_smoothed_delta1 = SmoothedValue(test_datasize) bg_smoothed_delta2 = SmoothedValue(test_datasize) bg_smoothed_delta3 = SmoothedValue(test_datasize) bg_smoothed_criteria = {'err_absRel':bg_smoothed_absRel, 'err_squaRel': bg_smoothed_squaRel, 'err_rms': bg_smoothed_rms, 'err_silog': bg_smoothed_silog, 'err_logRms': bg_smoothed_logRms, 'err_silog2': bg_smoothed_silog2, 'err_delta1': bg_smoothed_delta1, 'err_delta2': bg_smoothed_delta2, 'err_delta3': bg_smoothed_delta3, 'err_log10': bg_smoothed_log10} for i, data in enumerate(data_loader): out = model.module.inference_kitti(data) pred_depth = np.squeeze(out['b_fake']) img_path = data['A_paths'] if len(data['B_raw'].shape) != 2: smoothed_criteria = evaluate_err(pred_depth, data['B_raw'], smoothed_criteria, scale=80.) rois_smoothed_criteria = evaluate_err(pred_depth, data['B_raw_rois'], rois_smoothed_criteria, scale=80.) bg_smoothed_criteria = evaluate_err(pred_depth, data['B_raw_bg'], bg_smoothed_criteria, scale=80.) print('processing (%04d)-th image... %s' % (i, img_path)) print(smoothed_criteria['err_absRel'].GetGlobalAverageValue()) save_images(data, pred_depth, scale=256.*80.) LOG_FOUT = open(os.path.join('object_val_results.txt'), 'w') def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) if len(data['B_raw'].shape) != 2: