def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ eta_sec = self.iter_timer.seconds() * ( self.MAX_EPOCH - (cur_epoch + 1) * self.epoch_iters) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "train_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "dt": self.iter_timer.seconds(), "dt_data": self.data_timer.seconds(), "dt_net": self.net_timer.seconds(), "eta": eta, "lr": self.lr, "gpu_mem": "{:.2f}G".format(misc.gpu_mem_usage()), "RAM": "{:.2f}/{:.2f}G".format(*misc.cpu_mem_usage()), } if not self._cfg.DATA.MULTI_LABEL: top1_err = self.num_top1_mis / self.num_samples top5_err = self.num_top5_mis / self.num_samples avg_loss = self.loss_total / self.num_samples stats["top1_err"] = top1_err stats["top5_err"] = top5_err stats["loss"] = avg_loss for key in self.extra_stats.keys(): stats[key] = self.extra_stats_total[key] / self.num_samples logging.log_json_stats(stats)
def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ stats = { "_type": "val_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "time_diff": self.iter_timer.seconds(), "gpu_mem": "{:.2f}G".format(misc.gpu_mem_usage()), "RAM": "{:.2f}/{:.2f}G".format(*misc.cpu_mem_usage()), } if self._cfg.DATA.MULTI_LABEL: stats["map"] = get_map( torch.cat(self.all_preds).cpu().numpy(), torch.cat(self.all_labels).cpu().numpy(), ) else: top1_err = self.num_top1_mis / self.num_samples top5_err = self.num_top5_mis / self.num_samples self.min_top1_err = min(self.min_top1_err, top1_err) self.min_top5_err = min(self.min_top5_err, top5_err) stats["top1_err"] = top1_err stats["top5_err"] = top5_err stats["min_top1_err"] = self.min_top1_err stats["min_top5_err"] = self.min_top5_err for key in self.extra_stats.keys(): stats[key] = self.extra_stats_total[key] / self.num_samples logging.log_json_stats(stats)
def benchmark_data_loading(cfg): """ Benchmark the speed of data loading in PySlowFast. Args: cfg (CfgNode): configs. Details can be found in lib/config/defaults.py """ # Set up environment. setup_environment() # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Print config. logger.info("Benchmark data loading with config:") logger.info(pprint.pformat(cfg)) timer = Timer() dataloader = loader.construct_loader(cfg, "train") logger.info("Initialize loader using {:.2f} seconds.".format( timer.seconds())) # Total batch size across different machines. batch_size = cfg.TRAIN.BATCH_SIZE * cfg.NUM_SHARDS log_period = cfg.BENCHMARK.LOG_PERIOD epoch_times = [] # Test for a few epochs. for cur_epoch in range(cfg.BENCHMARK.NUM_EPOCHS): timer = Timer() timer_epoch = Timer() iter_times = [] if cfg.BENCHMARK.SHUFFLE: loader.shuffle_dataset(dataloader, cur_epoch) for cur_iter, _ in enumerate(tqdm.tqdm(dataloader)): if cur_iter > 0 and cur_iter % log_period == 0: iter_times.append(timer.seconds()) ram_usage, ram_total = misc.cpu_mem_usage() logger.info( "Epoch {}: {} iters ({} videos) in {:.2f} seconds. " "RAM Usage: {:.2f}/{:.2f} GB.".format( cur_epoch, log_period, log_period * batch_size, iter_times[-1], ram_usage, ram_total, )) timer.reset() epoch_times.append(timer_epoch.seconds()) ram_usage, ram_total = misc.cpu_mem_usage() logger.info( "Epoch {}: in total {} iters ({} videos) in {:.2f} seconds. " "RAM Usage: {:.2f}/{:.2f} GB.".format( cur_epoch, len(dataloader), len(dataloader) * batch_size, epoch_times[-1], ram_usage, ram_total, )) logger.info( "Epoch {}: on average every {} iters ({} videos) take {:.2f}/{:.2f} " "(avg/std) seconds.".format( cur_epoch, log_period, log_period * batch_size, np.mean(iter_times), np.std(iter_times), )) logger.info("On average every epoch ({} videos) takes {:.2f}/{:.2f} " "(avg/std) seconds.".format( len(dataloader) * batch_size, np.mean(epoch_times), np.std(epoch_times), ))