コード例 #1
0
ファイル: relax.py プロジェクト: felix5572/DeepTI
def make_task(iter_name, jdata, pres):
    equi_conf = jdata['equi_conf']
    equi_conf = os.path.abspath(equi_conf)
    model = jdata['model']
    model = os.path.abspath(model)
    model_mass_map = jdata['model_mass_map']
    if pres == None:
        pres = jdata['pres']
    elif 'pres' in jdata:
        print('P = %f overrides the pres in json data' % pres)
    jdata['pres'] = pres

    create_path(iter_name)
    cwd = os.getcwd()
    os.chdir(iter_name)
    with open('in.json', 'w') as fp:
        json.dump(jdata, fp, indent=4)
    os.symlink(os.path.relpath(equi_conf), 'conf.lmp')
    os.symlink(os.path.relpath(model), 'graph.pb')
    lmp_str \
        = _gen_lammps_relax('conf.lmp',
                            model_mass_map,
                            'graph.pb',
                            pres)
    with open('in.lammps', 'w') as fp:
        fp.write(lmp_str)
    os.chdir(cwd)
コード例 #2
0
ファイル: hti_water.py プロジェクト: felix5572/DeepTI
def refine_tasks(from_task, to_task, err) :
    jdata = json.load(open(os.path.join(from_task, 'in.json')))    
    equi_conf = get_task_file_abspath(from_task, jdata['equi_conf'])
    model = get_task_file_abspath(from_task, jdata['model'])

    create_path(to_task)
    copied_conf = os.path.join(os.path.abspath(to_task), 'conf.lmp')
    shutil.copyfile(equi_conf, copied_conf)
    jdata['equi_conf'] = 'conf.lmp'
    linked_model = os.path.join(os.path.abspath(to_task), 'graph.pb')
    shutil.copyfile(model, linked_model)
    jdata['model'] = 'graph.pb'
    jdata['orig_task'] = from_task
    jdata['refine_error'] = err

    cwd = os.getcwd()
    os.chdir(to_task)
    with open('in.json', 'w') as fp:
        json.dump(jdata, fp, indent=4)
    os.chdir(cwd)

    from_name = os.path.join(from_task, '00.angle_on')
    to_name = os.path.join(to_task, '00.angle_on')
    _refine_tasks(from_name, to_name, err, 'angle_on')
    from_name = os.path.join(from_task, '01.deep_on')
    to_name = os.path.join(to_task, '01.deep_on')
    _refine_tasks(from_name, to_name, err, 'deep_on')
    from_name = os.path.join(from_task, '02.bond_angle_off')
    to_name = os.path.join(to_task, '02.bond_angle_off')
    _refine_tasks(from_name, to_name, err, 'bond_angle_off')
コード例 #3
0
ファイル: equi.py プロジェクト: felix5572/DeepTI
def make_task(iter_name, jdata, ens, temp, pres, avg_posi, npt_conf):
    equi_conf = jdata['equi_conf']
    equi_conf = os.path.abspath(equi_conf)
    if npt_conf is not None:
        npt_conf = os.path.abspath(npt_conf)
    model = jdata['model']
    model = os.path.abspath(model)
    model_mass_map = jdata['model_mass_map']
    nsteps = jdata['nsteps']
    dt = jdata['dt']
    stat_freq = jdata['stat_freq']
    dump_freq = jdata['dump_freq']
    tau_t = jdata['tau_t']
    tau_p = jdata['tau_p']

    if ens == None:
        ens = jdata['ens']
    elif 'ens' in jdata:
        print('ens = %s overrides the ens in json data' % ens)
    jdata['ens'] = ens
    if temp == None:
        temp = jdata['temp']
    elif 'temp' in jdata:
        print('T = %f overrides the temp in json data' % temp)
    jdata['temp'] = temp
    if 'npt' in ens:
        if pres == None:
            pres = jdata['pres']
        elif 'pres' in jdata:
            print('P = %f overrides the pres in json data' % pres)
        jdata['pres'] = pres

    create_path(iter_name)
    cwd = os.getcwd()
    os.chdir(iter_name)
    with open('in.json', 'w') as fp:
        json.dump(jdata, fp, indent=4)
    if npt_conf is None:
        os.symlink(os.path.relpath(equi_conf), 'conf.lmp')
    else:
        open('conf.lmp', 'w').write(npt_equi_conf(npt_conf))
    os.symlink(os.path.relpath(model), 'graph.pb')
    lmp_str \
        = _gen_lammps_input('conf.lmp',
                            model_mass_map,
                            'graph.pb',
                            nsteps,
                            dt,
                            ens,
                            temp,
                            pres,
                            tau_t = tau_t,
                            tau_p = tau_p,
                            prt_freq = stat_freq,
                            dump_freq = dump_freq,
                            dump_ave_posi = avg_posi)
    with open('in.lammps', 'w') as fp:
        fp.write(lmp_str)
    os.chdir(cwd)
コード例 #4
0
def _make_tasks(iter_name, jdata, step):
    if step == 'soft_on':
        all_lambda = parse_seq(jdata['lambda_soft_on'])
    elif step == 'deep_on':
        all_lambda = parse_seq(jdata['lambda_deep_on'])
    elif step == 'soft_off':
        all_lambda = parse_seq(jdata['lambda_soft_off'])
    else:
        raise RuntimeError('unknow step')
    equi_conf = jdata['equi_conf']
    equi_conf = os.path.abspath(equi_conf)
    model_mass_map = jdata['model_mass_map']
    model = jdata['model']
    model = os.path.abspath(model)
    soft_param = jdata['soft_param']
    nsteps = jdata['nsteps']
    dt = jdata['dt']
    stat_freq = jdata['stat_freq']
    copies = None
    if 'copies' in jdata:
        copies = jdata['copies']
    temp = jdata['temp']

    create_path(iter_name)
    cwd = os.getcwd()
    os.chdir(iter_name)
    os.symlink(os.path.join('..', 'in.json'), 'in.json')
    os.symlink(os.path.join('..', 'conf.lmp'), 'conf.lmp')
    os.symlink(os.path.join('..', 'graph.pb'), 'graph.pb')
    os.chdir(cwd)

    for idx, ii in enumerate(all_lambda):
        work_path = os.path.join(iter_name, 'task.%06d' % idx)
        create_path(work_path)
        os.chdir(work_path)
        os.symlink(os.path.join('..', 'conf.lmp'), 'conf.lmp')
        os.symlink(os.path.join('..', 'graph.pb'), 'graph.pb')
        lmp_str \
            = _gen_lammps_input_ideal(step,
                                      'conf.lmp',
                                      model_mass_map,
                                      ii,
                                      soft_param,
                                      'graph.pb',
                                      nsteps,
                                      dt,
                                      'nvt',
                                      temp,
                                      prt_freq = stat_freq,
                                      copies = copies)
        with open('in.lammps', 'w') as fp:
            fp.write(lmp_str)
        with open('lambda.out', 'w') as fp:
            fp.write(str(ii))
        os.chdir(cwd)
コード例 #5
0
    def train(self, train_ds, test_ds):
        """
        train_ds: [enc_train_ds, dec_train_ds]
        val_ds: [enc_val_ds, dec_val_ds]
        test_ds: [enc_test_ds, dec_test_ds]
        """
        root_model_dir = generate_model_dir(self.flags.root_model_dir)
        create_path(root_model_dir)
        checkpoint_dir = os.path.join(root_model_dir, 'training_checkpoints')
        checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
        checkpoint = tf.train.Checkpoint(
            model=self.model)

        # save absl flags
        flags_txt = (
            self.flags.flags_into_string() +
            '--enc_vocab_size={}\n'.format(self.model.enc_vocab_size) +
            '--dec_vocab_size={}\n'.format(self.model.dec_vocab_size))
        flags_file = open(os.path.join(root_model_dir, 'flags.txt'), 'w')
        flags_file.write(flags_txt)
        flags_file.close()

        batch_count = 0
        epoch_count = -1
        batch_manager = Dataset(train_ds[0], train_ds[1], self.flags.num_epochs)
        while batch_manager.epochs_done <= self.flags.num_epochs:
            batch_count += 1
            enc_input, dec_input, dec_output_true = batch_manager.batch(self.flags.batch_size)
            batch_loss = self.train_step(enc_input, dec_input, dec_output_true)

            if epoch_count != batch_manager.epochs_done:
                test_enc_input = keras.preprocessing.sequence.pad_sequences(
                    test_ds[0], padding='post', value=0)
                test_dec_input = keras.preprocessing.sequence.pad_sequences(
                    test_ds[1], padding='post', value=0)
                test_dec_true = np.roll(test_dec_input, -1)
                test_dec_true[:, -1] = 0
                test_loss = self.eval(test_enc_input, test_dec_input, test_dec_true)

                checkpoint.save(file_prefix=checkpoint_prefix)
                epoch_count += 1

            if batch_count % 100 == 0:
                logging.info('Epoch {}, Batch {}, Loss {}, Last test loss: {}'.format(
                    batch_manager.epochs_done, batch_count, batch_loss, test_loss))
コード例 #6
0
def _make_tasks_onephase(temp,
                         pres,
                         task_path,
                         jdata,
                         conf_file='conf.lmp',
                         graph_file='graph.pb'):
    # assume that model and conf.lmp exist in the current dir
    assert (os.path.isfile(conf_file))
    assert (os.path.isfile(graph_file))
    conf_file = os.path.abspath(conf_file)
    graph_file = os.path.abspath(graph_file)
    model_mass_map = jdata['model_mass_map']
    # MD simulation protocol
    nsteps = jdata['nsteps']
    dt = jdata['dt']
    stat_freq = jdata['stat_freq']
    tau_t = jdata['tau_t']
    tau_p = jdata['tau_p']

    cwd = os.getcwd()
    create_path(task_path)
    os.chdir(task_path)
    os.symlink(os.path.relpath(conf_file), 'conf.lmp')
    os.symlink(os.path.relpath(graph_file), 'graph.pb')

    # input for NPT MD
    lmp_str \
        = ti._gen_lammps_input('conf.lmp',
                               model_mass_map,
                               'graph.pb',
                               nsteps,
                               dt,
                               'npt',
                               temp,
                               pres,
                               tau_t = tau_t,
                               tau_p = tau_p,
                               prt_freq = stat_freq)
    with open('thermo.out', 'w') as fp:
        fp.write('%.16e %.16e' % (temp, pres))
    with open('in.lammps', 'w') as fp:
        fp.write(lmp_str)

    os.chdir(cwd)
コード例 #7
0
ファイル: hti_water.py プロジェクト: felix5572/DeepTI
def make_tasks(iter_name, jdata) :
    equi_conf = os.path.abspath(jdata['equi_conf'])
    model = os.path.abspath(jdata['model'])

    create_path(iter_name)
    copied_conf = os.path.join(os.path.abspath(iter_name), 'conf.lmp')
    shutil.copyfile(equi_conf, copied_conf)
    jdata['equi_conf'] = 'conf.lmp'
    linked_model = os.path.join(os.path.abspath(iter_name), 'graph.pb')
    shutil.copyfile(model, linked_model)
    jdata['model'] = 'graph.pb'

    cwd = os.getcwd()
    os.chdir(iter_name)    
    with open('in.json', 'w') as fp:
        json.dump(jdata, fp, indent=4)
    os.chdir(cwd)
    subtask_name = os.path.join(iter_name, '00.angle_on')
    _make_tasks(subtask_name, jdata, 'angle_on')
    subtask_name = os.path.join(iter_name, '01.deep_on')
    _make_tasks(subtask_name, jdata, 'deep_on')
    subtask_name = os.path.join(iter_name, '02.bond_angle_off')
    _make_tasks(subtask_name, jdata, 'bond_angle_off')
コード例 #8
0
def _setup_dpdt(task_path, jdata):
    name_0 = jdata['phase_i']['name']
    name_1 = jdata['phase_ii']['name']
    conf_0 = jdata['phase_i']['equi_conf']
    conf_1 = jdata['phase_ii']['equi_conf']
    conf_0 = os.path.abspath(conf_0)
    conf_1 = os.path.abspath(conf_1)
    model = jdata['model']
    model = os.path.abspath(model)

    create_path(task_path)
    conf_0_name = 'conf.%s.lmp' % '0'
    conf_1_name = 'conf.%s.lmp' % '1'
    # conf_0_name = 'conf.%s.lmp' % name_0
    # conf_1_name = 'conf.%s.lmp' % name_1
    copied_conf_0 = os.path.join(os.path.abspath(task_path), conf_0_name)
    copied_conf_1 = os.path.join(os.path.abspath(task_path), conf_1_name)
    shutil.copyfile(conf_0, copied_conf_0)
    shutil.copyfile(conf_1, copied_conf_1)
    linked_model = os.path.join(os.path.abspath(task_path), 'graph.pb')
    shutil.copyfile(model, linked_model)

    with open(os.path.join(os.path.abspath(task_path), 'in.json'), 'w') as fp:
        json.dump(jdata, fp, indent=4)
コード例 #9
0
def make_tasks(iter_name, jdata):
    equi_conf = jdata['equi_conf']
    equi_conf = os.path.abspath(equi_conf)
    copies = None
    if 'copies' in jdata:
        copies = jdata['copies']
    model = jdata['model']
    model = os.path.abspath(model)
    model_mass_map = jdata['model_mass_map']
    nsteps = jdata['nsteps']
    dt = jdata['dt']
    stat_freq = jdata['stat_freq']
    # thermos = jdata['thermos']
    ens = jdata['ens']
    path = jdata['path']
    if 'nvt' in ens:
        if path == 't':
            temps = parse_seq(jdata['temps'])
            tau_t = jdata['tau_t']
            ntasks = len(temps)
        else:
            raise RuntimeError('supported path of nvt ens is \'t\'')
    elif 'npt' in ens:
        if path == 't':
            temps = parse_seq(jdata['temps'])
            press = jdata['press']
            ntasks = len(temps)
        elif path == 't-ginv':
            temps = parse_seq_ginv(jdata['temps'])
            press = jdata['press']
            ntasks = len(temps)
        elif path == 'p':
            temps = jdata['temps']
            press = parse_seq(jdata['press'])
            ntasks = len(press)
        else:
            raise RuntimeError('supported path of npt ens are \'t\' or \'p\'')
        tau_t = jdata['tau_t']
        tau_p = jdata['tau_p']
    else:
        raise RuntimeError('invalid ens')

    create_path(iter_name)
    copied_conf = os.path.join(os.path.abspath(iter_name), 'conf.lmp')
    shutil.copyfile(equi_conf, copied_conf)
    jdata['equi_conf'] = 'conf.lmp'
    linked_model = os.path.join(os.path.abspath(iter_name), 'graph.pb')
    shutil.copyfile(model, linked_model)
    jdata['model'] = 'graph.pb'

    cwd = os.getcwd()
    os.chdir(iter_name)
    with open('in.json', 'w') as fp:
        json.dump(jdata, fp, indent=4)
    os.chdir(cwd)
    for ii in range(ntasks):
        work_path = os.path.join(iter_name, 'task.%06d' % ii)
        create_path(work_path)
        os.chdir(work_path)
        os.symlink(os.path.relpath(copied_conf), 'conf.lmp')
        os.symlink(os.path.relpath(linked_model), 'graph.pb')
        if 'nvt' in ens and path == 't':
            lmp_str \
                = _gen_lammps_input('conf.lmp',
                                    model_mass_map,
                                    'graph.pb',
                                    nsteps,
                                    dt,
                                    ens,
                                    temps[ii],
                                    tau_t = tau_t,
                                    prt_freq = stat_freq,
                                    copies = copies)
            with open('thermo.out', 'w') as fp:
                fp.write('%f' % temps[ii])
        elif 'npt' in ens and (path == 't' or path == 't-ginv'):
            lmp_str \
                = _gen_lammps_input('conf.lmp',
                                    model_mass_map,
                                    'graph.pb',
                                    nsteps,
                                    dt,
                                    ens,
                                    temps[ii],
                                    press,
                                    tau_t = tau_t,
                                    tau_p = tau_p,
                                    prt_freq = stat_freq,
                                    copies = copies)
            with open('thermo.out', 'w') as fp:
                fp.write('%f' % (temps[ii]))
        elif 'npt' in ens and path == 'p':
            lmp_str \
                = _gen_lammps_input('conf.lmp',
                                    model_mass_map,
                                    'graph.pb',
                                    nsteps,
                                    dt,
                                    ens,
                                    temps,
                                    press[ii],
                                    tau_t = tau_t,
                                    tau_p = tau_p,
                                    prt_freq = stat_freq,
                                    copies = copies)
            with open('thermo.out', 'w') as fp:
                fp.write('%f' % (press[ii]))
        else:
            raise RuntimeError('invalid ens or path setting')

        with open('in.lammps', 'w') as fp:
            fp.write(lmp_str)
        os.chdir(cwd)
コード例 #10
0
def _make_tasks(iter_name,
                jdata,
                ref,
                switch='one-step',
                step='both',
                link=False):
    if 'crystal' not in jdata:
        print('do not find crystal in jdata, assume vega')
        jdata['crystal'] = 'vega'
    crystal = jdata['crystal']
    protect_eps = jdata['protect_eps']

    if switch == 'one-step':
        all_lambda = parse_seq(jdata['lambda'])
    elif switch == 'two-step' or switch == 'three-step':
        if step == 'deep_on':
            all_lambda = parse_seq(jdata['lambda_deep_on'])
        elif step == 'spring_off':
            all_lambda = parse_seq(jdata['lambda_spring_off'])
        elif step == 'lj_on':
            all_lambda = parse_seq(jdata['lambda_lj_on'])
        else:
            raise RuntimeError('unknown step', step)

    if all_lambda[0] == 0:
        all_lambda[0] += protect_eps
    if all_lambda[-1] == 1:
        all_lambda[-1] -= protect_eps

    equi_conf = jdata['equi_conf']
    equi_conf = os.path.abspath(equi_conf)
    model = jdata['model']
    model = os.path.abspath(model)
    model_mass_map = jdata['model_mass_map']
    nsteps = jdata['nsteps']
    dt = jdata['dt']
    spring_k = jdata['spring_k']
    sparam = jdata.get('soft_param', {})
    if crystal == 'frenkel':
        spring_k_1 = []
        for ii in model_mass_map:
            spring_k_1.append(spring_k * ii)
        spring_k = spring_k_1
    stat_freq = jdata['stat_freq']
    copies = None
    if 'copies' in jdata:
        copies = jdata['copies']
    temp = jdata['temp']
    jdata['reference'] = ref
    jdata['switch'] = switch
    jdata['step'] = step

    create_path(iter_name)
    copied_conf = os.path.join(os.path.abspath(iter_name), 'conf.lmp')
    if not link:
        shutil.copyfile(equi_conf, copied_conf)
    else:
        cwd = os.getcwd()
        os.chdir(iter_name)
        os.symlink(os.path.relpath(equi_conf), 'conf.lmp')
        os.chdir(cwd)
    jdata['equi_conf'] = 'conf.lmp'
    linked_model = os.path.join(os.path.abspath(iter_name), 'graph.pb')
    if not link:
        shutil.copyfile(model, linked_model)
    else:
        cwd = os.getcwd()
        os.chdir(iter_name)
        os.symlink(os.path.relpath(model), 'graph.pb')
        os.chdir(cwd)
    jdata['model'] = 'graph.pb'
    langevin = jdata.get('langevin', True)

    cwd = os.getcwd()
    os.chdir(iter_name)
    with open('in.json', 'w') as fp:
        json.dump(jdata, fp, indent=4)
    os.chdir(cwd)

    for idx, ii in enumerate(all_lambda):
        work_path = os.path.join(iter_name, 'task.%06d' % idx)
        create_path(work_path)
        os.chdir(work_path)
        os.symlink(os.path.relpath(copied_conf), 'conf.lmp')
        os.symlink(os.path.relpath(linked_model), 'graph.pb')
        if idx == 0:
            ens = 'nvt-langevin'
        else:
            ens = 'nvt'
        if langevin:
            ens = 'nvt-langevin'
        if jdata.get('ens', False):
            ens = jdata.get('ens')
        if ref == 'einstein':
            lmp_str \
                = _gen_lammps_input('conf.lmp',
                                    model_mass_map,
                                    ii,
                                    'graph.pb',
                                    spring_k,
                                    nsteps,
                                    dt,
                                    ens,
                                    temp,
                                    prt_freq = stat_freq,
                                    copies = copies,
                                    switch = switch,
                                    step = step,
                                    sparam = sparam,
                                    crystal = crystal)
        elif ref == 'ideal':
            lmp_str \
                = _gen_lammps_input_ideal('conf.lmp',
                                          model_mass_map,
                                          ii,
                                          'graph.pb',
                                          nsteps,
                                          dt,
                                          ens,
                                          temp,
                                          prt_freq = stat_freq,
                                          copies = copies)
        else:
            raise RuntimeError('unknow reference system type ' + ref)
        with open('in.lammps', 'w') as fp:
            fp.write(lmp_str)
        with open('lambda.out', 'w') as fp:
            fp.write(str(ii))
        os.chdir(cwd)
コード例 #11
0
def make_tasks(iter_name, jdata, ref, switch='one-step'):
    equi_conf = os.path.abspath(jdata['equi_conf'])
    model = os.path.abspath(jdata['model'])

    if switch == 'one-step':
        subtask_name = iter_name
        _make_tasks(subtask_name, jdata, ref, step='both')
    elif switch == 'two-step' or switch == 'three-step':
        create_path(iter_name)
        copied_conf = os.path.join(os.path.abspath(iter_name), 'conf.lmp')
        shutil.copyfile(equi_conf, copied_conf)
        jdata['equi_conf'] = 'conf.lmp'
        linked_model = os.path.join(os.path.abspath(iter_name), 'graph.pb')
        shutil.copyfile(model, linked_model)
        jdata['model'] = 'graph.pb'
        cwd = os.getcwd()
        os.chdir(iter_name)
        with open('in.json', 'w') as fp:
            json.dump(jdata, fp, indent=4)
        if switch == 'two-step':
            subtask_name = '00.deep_on'
            _make_tasks(subtask_name,
                        jdata,
                        ref,
                        switch=switch,
                        step='deep_on',
                        link=True)
            subtask_name = '01.spring_off'
            _make_tasks(subtask_name,
                        jdata,
                        ref,
                        switch=switch,
                        step='spring_off',
                        link=True)
        elif switch == 'three-step':
            subtask_name = '00.lj_on'
            _make_tasks(subtask_name,
                        jdata,
                        ref,
                        switch=switch,
                        step='lj_on',
                        link=True)
            subtask_name = '01.deep_on'
            _make_tasks(subtask_name,
                        jdata,
                        ref,
                        switch=switch,
                        step='deep_on',
                        link=True)
            subtask_name = '02.spring_off'
            _make_tasks(subtask_name,
                        jdata,
                        ref,
                        switch=switch,
                        step='spring_off',
                        link=True)
        else:
            raise RuntimeError('unknow switch', switch)
        os.chdir(cwd)
    else:
        raise RuntimeError('unknow switch', switch)
コード例 #12
0
 def save(self, save_to_path='./vocab'):
     create_path(save_to_path)
     with open(os.path.join(save_to_path, 'vocab_hub.pkl'), 'wb') as f:
         pickle.dump(self, f)
コード例 #13
0
ファイル: hti_water.py プロジェクト: felix5572/DeepTI
def _make_tasks(iter_name, jdata, step) :
    if step == 'angle_on' :
        all_lambda = parse_seq(jdata['lambda_angle_on'])
        protect_eps = jdata['protect_eps']    
        if all_lambda[0] == 0 :
            all_lambda[0] += protect_eps
    elif step == 'deep_on' :
        all_lambda = parse_seq(jdata['lambda_deep_on'])
        protect_eps = jdata['protect_eps']    
        if all_lambda[0] == 0 :
            all_lambda[0] += protect_eps
    elif step == 'bond_angle_off' :
        all_lambda = parse_seq(jdata['lambda_bond_angle_off'])
        protect_eps = jdata['protect_eps']    
        if all_lambda[-1] == 1 :
            all_lambda[-1] -= protect_eps
    equi_conf = jdata['equi_conf']
    equi_conf = os.path.abspath(equi_conf)
    model = jdata['model']
    model = os.path.abspath(model)
    model_mass_map = jdata['model_mass_map']
    nsteps = jdata['nsteps']
    dt = jdata['dt']
    bparam = jdata['bond_param']
    sparam = jdata['soft_param']
    stat_freq = jdata['stat_freq']
    ens = jdata['ens']
    temp = jdata['temp']
    pres = jdata['pres']
    tau_t = jdata['tau_t']
    tau_p = jdata['tau_p']
    copies = None
    if 'copies' in jdata :
        copies = jdata['copies']

    create_path(iter_name)
    cwd = os.getcwd()
    os.chdir(iter_name)
    os.symlink(os.path.join('..', 'in.json'), 'in.json')
    os.symlink(os.path.join('..', 'conf.lmp'), 'orig.lmp')
    os.symlink(os.path.join('..', 'graph.pb'), 'graph.pb')
    lines = water.add_bonds(open('orig.lmp').read().split('\n'))
    open('conf.lmp', 'w').write('\n'.join(lines))
    os.chdir(cwd)
    for idx in range(len(all_lambda)) :
        work_path = os.path.join(iter_name, 'task.%06d' % idx)
        create_path(work_path)
        os.chdir(work_path)
        os.symlink(os.path.join('..', 'conf.lmp'), 'conf.lmp')
        os.symlink(os.path.join('..', 'graph.pb'), 'graph.pb')
        lmp_str \
            = _gen_lammps_input(step,
                                'conf.lmp', 
                                model_mass_map, 
                                all_lambda[idx],
                                'graph.pb',
                                bparam,
                                sparam,
                                nsteps, 
                                dt, 
                                ens, 
                                temp, 
                                pres, 
                                tau_t = tau_t,
                                tau_p = tau_p,
                                prt_freq = stat_freq, 
                                copies = copies)
        with open('in.lammps', 'w') as fp :
            fp.write(lmp_str)
        with open('lambda.out', 'w') as fp :
            fp.write(str(all_lambda[idx]))
        os.chdir(cwd)