コード例 #1
0
ファイル: __init__.py プロジェクト: CDT-PISA/CDT_2D
def set_fit_props(name, points, config, remove):
    from os import chdir, popen
    from os.path import basename, dirname
    import json
    from lib.utils import (fit_dir, config_dir, point_dir, dir_point,
                           authorization_request)

    if remove:
        if points:
            print('Warning: points specification not compatible with --remove '
                  'option.')
            return
        elif config != 'test':
            print('Warning: config specification not compatible with --remove '
                  'option.')
            return

    chdir(fit_dir(name))

    try:
        with open('sims.json', 'r') as file:
            sims = json.load(file)
    except FileNotFoundError:
        sims = []

    # SIMS UPDATE

    if not remove:
        c_dir = config_dir(config)
        for Point in points:
            p_dir = c_dir + '/' + point_dir(Point)
            if p_dir not in sims:
                sims += [p_dir]

        with open('sims.json', 'w') as file:
            json.dump(sims, file, indent=4)

    # SIMS REMOTION

    else:
        new_sims = sims.copy()
        for sim in sims:
            Point = dir_point(basename(sim))
            config = basename(dirname(sim))

            what = f"to remove sim from fit '{name}'"
            extra = f"\033[38;5;80m  config: '{config}'\033[0m"
            auth = authorization_request(Point=Point, what_to_do=what,
                                         extra_message=extra)

            if auth == 'quit':
                print('Nothing done for last sim.')
                return
            elif auth == 'yes':
                new_sims.remove(sim)
                with open('sims.json', 'w') as file:
                    json.dump(new_sims, file, indent=4)
                print('Sim removed')
            else:
                print('Nothing removed.')
コード例 #2
0
ファイル: __init__.py プロジェクト: CDT-PISA/CDT_2D
def sim_obs(points, config, plot, fit, exclude_torelons, exclude_bootstrap,
            fit_name, force):
    from os.path import basename, dirname, realpath
    import json
    from pprint import pprint
    from lib.utils import config_dir, dir_point, fit_dir

    if fit_name:
        f_dir = fit_dir(fit_name)
        try:
            with open(f_dir + '/sims.json', 'r') as file:
                sims = json.load(file)
        except FileNotFoundError:
            print('No simulation already assigned to this fit.')

        points = []
        points_configs = {}
        for s in sims:
            if s[-1] == '/':
                s = s[:-1]

            Point = dir_point(basename(s))
            points += [Point]
            points_configs = {**points_configs, Point: realpath(dirname(s))}
        c_dir = None
    else:
        points_configs = None
        c_dir = config_dir(config)

    col = 216 # color
    print(f'Number of selected points: \033[38;5;{col}m{len(points)}\033[0m')
    print(f'\033[38;5;{col}m', end='')
    pprint(points)
    print('\033[0m')

    if not force:
        i = 0
        for Point in points:
            args = (Point, points_configs, c_dir, i, force, plot, fit,
                    exclude_torelons, exclude_bootstrap)
            ret = sim_obs_compute(args)
            if ret == 'return':
                return
            elif ret == 'continue':
                continue
            i += 1
    else:
        import multiprocessing as mp

        i = 0
        args = []
        for Point in points:
            args += [(Point, points_configs, c_dir, i, force, plot, fit,
                    exclude_torelons, exclude_bootstrap)]
            i += 1

        with mp.Pool(mp.cpu_count() - 1) as pool:
            pool.map(sim_obs_compute, args)
コード例 #3
0
ファイル: __init__.py プロジェクト: CDT-PISA/CDT_2D
def reset_fit(names, delete):
    from os.path import isdir
    from os import chdir, mkdir
    from shutil import rmtree
    from re import fullmatch
    import json
    from lib.utils import (authorization_request, fit_dir, find_fits,
                           project_folder)

    pattern_names = []
    pure_names = []
    all_names = list(find_fits().keys())
    for name in names:
        if name[0] == '§':
            pattern_names += [c for c in all_names
                                if fullmatch(name[1:], c)]
        else:
            pure_names += [name]

    names = list(set(pure_names + pattern_names))
    print(f'Chosen fits are:\n  {names}')

    for name in names:
        fit = fit_dir(name)

        if delete:
            action = 'delete'
            action_p = action + 'd'
        else:
            action = 'reset'
            action_p = action

        what_to_do = 'to ' + action + ' the fit \'' + name + '\''
        authorized = authorization_request(what_to_do)
        if authorized == 'yes':
            rmtree(fit)
            if action == 'reset':
                mkdir(fit)
            elif action == 'delete':
                with open(project_folder() + '/output/fits.json', 'r') as file:
                    fits = json.load(file)
                del fits[name]
                with open(project_folder() + '/output/fits.json', 'w') as file:
                    json.dump(fits, file, indent=4)
            print(f'Fit {name} has been {action_p}.')
        elif authorized == 'quit':
            print('Nothing done on last fit.')
            return
        else:
            print('Nothing done.')
コード例 #4
0
def preplot(fit_name, kind):
    from os import chdir
    import numpy as np
    import matplotlib.pyplot as plt
    from lib.utils import fit_dir
    import seaborn as sns

    sns.set_style('whitegrid')
    sns.set_context('talk')

    chdir(fit_dir(fit_name))

    if kind in ['v', 'volumes']:
        try:
            data = np.genfromtxt('volumes.csv', unpack=True)
        except (FileNotFoundError, OSError):
            print(f"No file 'volumes.csv' for fit {fit_name}")
            return
        Lambda = data[0]
        vol, err = data[2], data[3]

        plt.title('Volumes:\n' + fit_name)
        plt.errorbar(Lambda, vol, err, fmt='none', capsize=5)
        plt.savefig('pre_volumes.pdf')
        plt.show()

    elif kind in ['p', 'profiles']:
        try:
            data = np.genfromtxt('profiles_length.csv', unpack=True)
        except (FileNotFoundError, OSError):
            print(f"No file 'profiles_length.csv' for fit {fit_name}")
            return
        Lambda = data[0]
        pro_xi, err = data[2], data[3]

        plt.title('Profiles Correlation Lengths:\n' + fit_name)
        plt.errorbar(Lambda, pro_xi, err, fmt='none', capsize=5)
        plt.savefig('pre_profiles.pdf')
        plt.show()

    elif kind in ['g', 'action', 'gauge', 'gauge-action']:
        try:
            data = np.genfromtxt('gauge_action.csv', unpack=True)
        except (FileNotFoundError, OSError):
            print(f"No file 'gauge_action.csv' for fit {fit_name}")
            return
        Lambda, Beta = data[0], data[1]
        g_action, err = data[2], data[3]
        g_action_density, density_err = data[4], data[5]

        # the average coord num in 2d is fixed and it is 6
        g_av_plaq = -((g_action_density * 6) / Beta - 1)
        av_plaq_err = (density_err * 6) / Beta

        fig, axs = plt.subplots(2, 1)
        axs[0].set_title('Gauge action:\n' + fit_name)
        axs[0].errorbar(Lambda,
                        g_action,
                        err,
                        fmt='none',
                        c='tab:green',
                        capsize=5,
                        label='action')
        axs[0].legend()
        axs[1].errorbar(Lambda,
                        g_av_plaq,
                        av_plaq_err,
                        fmt='none',
                        capsize=5,
                        label='average plaquette')
        axs[1].legend()
        plt.savefig('pre_gauge_action.pdf')
        plt.show()

    elif kind in ['top', 'susc', 'top-susc']:
        try:
            data = np.genfromtxt('top_susc.csv', unpack=True)
        except (FileNotFoundError, OSError):
            print(f"No file 'top_susc.csv' for fit {fit_name}")
            return
        Lambda = data[0]
        top, err = data[2], data[3]

        plt.title('Topological susceptibilities:\n' + fit_name)
        plt.errorbar(Lambda, top, err, fmt='none', capsize=5)
        plt.savefig('pre_top_susc.pdf')
        plt.show()

    elif kind in ['t', 'torelons']:
        try:
            data = np.genfromtxt('torelon_length.csv', unpack=True)
        except (FileNotFoundError, OSError):
            print(f"No file 'torelon_length.csv' for fit {fit_name}")
            return
        Lambda = data[0]
        tor_xi, err = data[2], data[3]

        plt.title('Torelons Correlation Lengths:\n$\\beta = ' + fit_name[4:] +
                  '$')
        plt.errorbar(Lambda, tor_xi, err, fmt='none', capsize=5)
        plt.xlabel('$\\lambda$')
        plt.ylabel('$\\xi_T$')
        plt.tight_layout()
        plt.savefig('pre_torelons.pdf')
        plt.show()
コード例 #5
0
ファイル: __init__.py プロジェクト: CDT-PISA/CDT_2D
def export_data(name, unpack):
    from os import chdir
    from os.path import basename, dirname, isfile
    import json
    import numpy as np
    from lib.utils import fit_dir, dir_point

    fit_d = fit_dir(name)
    chdir(fit_d)

    if not unpack:
        try:
            with open('sims.json', 'r') as file:
                sims = json.load(file)
        except FileNotFoundError:
            print('No simulation assigned to this fit.')
            return

        data = []
        for s in sims:
            if s[-1] == '/':
                s = s[:-1]

            config = basename(dirname(s))
            Point = dir_point(basename(s))
            point_data = {}

            if isfile(s + '/max_volume_reached'):
                print(f'\033[38;5;41m{Point}\033[0m not included in fit, '
                      'because '
                      '\033[38;5;80mmax_volume_reached\033[0m is present.')
                print(f"\033[38;5;80m  config: '{config}'\033[0m")
                continue
            try:
                with open(s + '/measures.json', 'r') as file:
                    measures = json.load(file)
            except FileNotFoundError:
                print(f'\033[38;5;41m{Point}\033[0m no measure file present.')
                print(f"\033[38;5;80m  config: '{config}'\033[0m")
                continue

            point_data['lambda'] = Point[0]
            point_data['beta'] = Point[1]
            point_data['config'] = config
            point_data.update(measures.copy())

            for prop in ['cut', 'block', 'time']:
                try:
                    del point_data[prop]
                except KeyError:
                    pass

            data += [point_data]
            print(f'\033[38;5;41m{Point}\033[0m collected.')

        with open('data.json', 'w') as file:
            json.dump(data, file, indent=4)

    elif unpack in ['v', 'volumes']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        vol_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                volume = point_data['volume']
            except KeyError:
                continue
            # print(f'\033[38;5;41m{Point}\033[0m, {config}:')
            # print('\t', volume)
            vol_data += [[Point[0], Point[1], volume[0], volume[1], config]]

        with open('volumes.csv', 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda Beta Volume Error Config' + end)
            vol_data = sorted(vol_data)
            for point_vol in vol_data:
                str_point_vol = []
                for x in point_vol:
                    str_point_vol += [str(x)]
                file.write(sep.join(str_point_vol) + end)

        print(f"\033[38;5;41m({name})\033[0m volumes from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
               "\033[38;5;80m'volumes.csv'\033[0m")

    elif unpack in ['g', 'gauge-action']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        g_action_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                g_action = point_data['action']
                g_action_density = point_data['action-density']
            except KeyError:
                continue
            # print(f'\033[38;5;41m{Point}\033[0m, {config}:')
            # print('\t', volume)
            g_action_data += [[Point[0], Point[1], g_action[0], g_action[1],
                            g_action_density[0], g_action_density[1], config]]

        with open('gauge_action.csv', 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda Beta Action Error ActionDensity Error Config'
                       + end)
            g_action_data = sorted(g_action_data)
            for point_g_action in g_action_data:
                str_point_g_action = []
                for x in point_g_action:
                    str_point_g_action += [str(x)]
                file.write(sep.join(str_point_g_action) + end)

        print(f"\033[38;5;41m({name})\033[0m gauge actions from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
               "\033[38;5;80m'gauge_action.csv'\033[0m")

    elif unpack in ['p', 'profiles']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        profile_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                profile, errors = point_data['profiles_corr']
            except KeyError:
                continue

            profile_data += [[Point[0], Point[1], config, *profile, *errors]]

        with open('profiles.csv', 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda[0] Beta[1] Config[2] Profile[3:3+t}] ' +
                  'Errors[3+t:3+2t]' + end)
            profile_data = sorted(profile_data)
            for point_profile in profile_data:
              str_point_profile = []
              for x in point_profile:
                  str_point_profile += [str(x)]
              file.write(sep.join(str_point_profile) + end)

        print(f"\033[38;5;41m({name})\033[0m profiles from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
               "\033[38;5;80m'profiles.csv'\033[0m")

    elif unpack in ['pf', 'profiles-fit', 'pf2', 'profiles-fit2']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        profile_fit_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                if unpack[-1] != '2':
                    fit_data = point_data['profiles_corr_fit']
                else:
                    fit_data = point_data['profiles-corr-fit2']
                len_corr = fit_data['par'][0]
                err = np.sqrt(fit_data['cov'][0][0])
            except KeyError:
                continue

            profile_fit_data += [[Point[0], Point[1], len_corr, err, config]]

        if unpack[-1] != '2':
            file_name = 'profiles_length.csv'
        else:
            file_name = 'profiles_length2.csv'

        with open(file_name, 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda Beta Corr_Length Error Config' + end)
            profile_fit_data = sorted(profile_fit_data)
            for point_profile in profile_fit_data:
              str_point_profile = []
              for x in point_profile:
                  str_point_profile += [str(x)]
              file.write(sep.join(str_point_profile) + end)

        print(f"\033[38;5;41m({name})\033[0m profiles fit from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
              f"\033[38;5;80m'{file_name}'\033[0m")

    elif unpack in ['top', 'susc', 'top-susc']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        susc_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                susc = point_data['top-susc']
            except KeyError:
                continue
            susc_data += [[Point[0], Point[1], susc[0], susc[1], config]]

        with open('top_susc.csv', 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda Beta Top-Susc Error Config' + end)
            susc_data = sorted(susc_data)
            for point_susc in susc_data:
                str_point_susc = []
                for x in point_susc:
                    str_point_susc += [str(x)]
                file.write(sep.join(str_point_susc) + end)

        print(f"\033[38;5;41m({name})\033[0m topological susceptibilities from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
               "\033[38;5;80m'top_susc.csv'\033[0m")

    elif unpack in ['t', 'torelons']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        torelon_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                # print(Point)
                torelon, errors = point_data['torelon-decay']
                # print(len(point_data['torelon-decay']))
            except KeyError:
                continue

            torelon_data += [[Point[0], Point[1], config, *torelon, *errors]]

        with open('torelons.csv', 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda[0] Beta[1] Config[2] Torelon[3:3+t}] ' +
                  'Errors[3+t:3+2t]' + end)
            for point_torelon in torelon_data:
              str_point_torelon = []
              torelon_data = sorted(torelon_data)
              for x in point_torelon:
                  str_point_torelon += [str(x)]
              file.write(sep.join(str_point_torelon) + end)

        print(f"\033[38;5;41m({name})\033[0m torelons from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
               "\033[38;5;80m'torelons.csv'\033[0m")

    elif unpack in ['tf', 'torelons-fit', 'tf2', 'torelons-fit2']:
        try:
            with open('data.json', 'r') as file:
                data = json.load(file)
        except FileNotFoundError:
            print("No data file (\033[38;5;80m'data.json'\033[0m) to unpack.")
            return

        profile_fit_data = []
        for point_data in data:
            Point = (point_data['lambda'], point_data['beta'])
            config = point_data['config']
            try:
                if unpack[-1] != '2':
                    fit_data = point_data['torelon-decay-fit']
                else:
                    fit_data = point_data['torelon-decay-fit2']
                len_corr = fit_data['par'][0]
                err = np.sqrt(fit_data['cov'][0][0])
            except KeyError:
                continue

            profile_fit_data += [[Point[0], Point[1], len_corr, err, config]]

        if unpack[-1] != '2':
            file_name = 'torelon_length.csv'
        else:
            file_name = 'torelon_length2.csv'

        with open(file_name, 'w') as file:
            sep = ' '
            end = '\n'
            file.write('# Lambda Beta Corr_Length Error Config' + end)
            profile_fit_data = sorted(profile_fit_data)
            for point_profile in profile_fit_data:
              str_point_profile = []
              for x in point_profile:
                  str_point_profile += [str(x)]
              file.write(sep.join(str_point_profile) + end)

        print(f"\033[38;5;41m({name})\033[0m profiles fit from "
               "\033[38;5;80m'data.json'\033[0m unpacked to "
              f"\033[38;5;80m'{file_name}'\033[0m")
コード例 #6
0
ファイル: __init__.py プロジェクト: CDT-PISA/CDT_2D
def info_fit(name, kind='sims'):
    from os import chdir
    from os.path import basename, dirname
    from pprint import pprint
    import json
    from lib.utils import fit_dir, config_dir, dir_point

    if kind in ['s', 'sims', None]:
        kind = 'sims'
    elif kind in ['o', 'obs']:
        kind = 'obs'

    chdir(fit_dir(name))

    try:
        with open('sims.json', 'r') as file:
            sims = json.load(file)
    except FileNotFoundError:
        print('No simulation already assigned to this fit.')

    d = {}
    for s in sims:
        if s[-1] == '/':
            s = s[:-1]

        if kind == 'sims':
            config = basename(dirname(s))
            Point = dir_point(basename(s))
            try:
                d[config] += [Point]
            except KeyError:
                d[config] = [Point]
        elif kind == 'obs':
            try:
                with open(s + '/measures.json', 'r') as file:
                    measures = json.load(file)
            except FileNotFoundError:
                measures = {}

            flags = ''
            if 'cut' in measures.keys():
                flags += 'C'
            if 'block' in measures.keys():
                flags += 'B'
            if 'volume' in measures.keys():
                flags += 'V'

            config = basename(dirname(s))
            Point = dir_point(basename(s))
            try:
                d[config] += [[Point, flags]]
            except KeyError:
                d[config] = [[Point, flags]]

    for k in d.keys():
        d[k] = sorted(d[k])

    if kind == 'sims':
        pprint(d)
    elif kind == 'obs':
        pprint(d)
    else:
        raise ValueError('info-fit: kind {kind} not recognized')
コード例 #7
0
ファイル: __init__.py プロジェクト: CDT-PISA/CDT_2D
def fit_divergence(name, kind='volumes', reload=False):
    from os import chdir
    from os.path import basename, dirname, isfile
    from datetime import datetime
    import json
    from pprint import pprint
    from numpy import genfromtxt
    from lib.utils import fit_dir, dir_point
    from lib.analysis.fit import fit_divergence

    if kind in ['v', 'volumes']:
        kind = 'volumes'
        kind_file = 'volumes'
    elif kind in ['p', 'profiles']:
        kind = 'profiles'
        kind_file = 'profiles_length'
    elif kind in ['t', 'torelons']:
        kind = 'torelons'
        kind_file = 'torelons_length'
    elif kind in ['g', 'gauge-action']:
        kind = 'gauge-action'
        kind_file = 'gauge_action'
    elif kind in ['top', 'susc', 'top-susc']:
        kind = 'topological-susceptibility'
        kind_file = 'top_susc'
    else:
        raise ValueError(f'{kind} not available for divergence fit.')

    fit_d = fit_dir(name)
    chdir(fit_d)

    try:
        with open('sims.json', 'r') as file:
            sims = json.load(file)
    except FileNotFoundError:
        print('No simulation already assigned to this fit.')
        # do not return, because if 'kind.csv' is present it can use that

    if not isfile(f'{kind_file}.csv') or reload:
        d = {}
        lambdas = []
        betas = []
        means = []
        errors = []
        for s in sims:
            if s[-1] == '/':
                s = s[:-1]

            config = basename(dirname(s))
            Point = dir_point(basename(s))

            if isfile(s + '/max_volume_reached'):
                print(f'\033[38;5;41m{Point}\033[0m not included in fit, '
                      'because '
                      '\033[38;5;80mmax_volume_reached\033[0m is present.')
                print(f"\033[38;5;80m  config: '{config}'\033[0m")
                continue

            try:
                with open(s + '/measures.json', 'r') as file:
                    measures = json.load(file)
            except FileNotFoundError:
                measures = {}

            with open(s + '/state.json', 'r') as file:
                state = json.load(file)

            if 'time' in measures.keys():
                s_time = datetime.strptime(state['end_time'],
                                           '%d-%m-%Y %H:%M:%S')
                m_time = datetime.strptime(measures['time'],
                                           '%d-%m-%Y %H:%M:%S')
            else:
                print(f'Mising time in {Point}, in config: {config}.')
                return

            # print(Point)
            # print(s_time, type(s_time), '\n' + str(m_time), type(m_time))
            if(s_time > m_time):
                print('\033[38;5;203mWarning:\033[0m in Point '
                      f'\033[38;5;41m{Point}\033[0m in '
                      f"\033[38;5;80mconfig: '{config}'\033[0m measures are "
                      '\033[38;5;210mnot up to date\033[0m '
                      'with last simulation\'s data')
                print()

            d[Point] = {'config': config, **measures,
                        'time_sim_end': state['end_time']}

            k_key = f'{kind}'[:-1]
            if k_key in measures.keys():
                lambdas += [Point[0]]
                betas += [Point[1]]
                means += [measures[k_key][0]]
                errors += [measures[k_key][1]]
            else:
                print(f"Missing {k_key} in {Point}, in config: {config}.")
                return

        with open(f'{kind_file}.csv', 'w') as file:
            file.write('# Lambda Beta Volume Error Config\n')
            for Point, attr in d.items():
                mean, err = attr[f'{kind}'[:-1]]
                data = [Point[0], Point[1], mean, err, attr['config']]
                line = ' '.join([str(x) for x in data])
                file.write(line + '\n')
    else:
        data = genfromtxt(f'{kind_file}.csv', unpack=True)
        lambdas, betas = data[:2]
        if kind == 'gauge-action':
            means, errors = data[4:6]
        else:
            means, errors = data[2:4]

    fit_divergence(lambdas, means, errors, betas, kind=kind)