results = vecm.cointgration_params_estimate(df, rank) for result in results: print(result.summary()) # %% vecm_result = vecm.vecm_estimate(df, 1, rank, report=True) # %% vecm.residual_adf_test(df, vecm_result.beta.T, report=True) # %% train = vecm.vecm_train(df, 1, rank, 10) # %% var = "x1" title = title_prefix + r" $x_1$ Training" plot = f"vecm_analysis_{example}_x1_training" vecm.training_plot(title, train, var, [0.7, 0.2], plot) # %% var = "x2" title = title_prefix + r" $x_2$ Training" plot = f"vecm_analysis_{example}_x2_training" vecm.training_plot(title, train, var, [0.7, 0.2], plot)
# %% title = title_prefix labels = [r"$x_1$", r"$x_2$", r"$x_3$"] plot = f"vecm_prediction_{example}_samples" vecm.comparison_plot(title, df, α.T, β, labels, [0.45, 0.075], plot) # %% vecm_result = vecm.vecm_estimate(df, maxlags, rank, report=True) # %% train = vecm.vecm_train(df, maxlags, rank, 10) # %% var = "x1" title = title_prefix + r" $x_1$ Training" plot = f"vecm_prediction_{example}_x1_training" vecm.training_plot(title, train, var, [0.7, 0.2], plot) # %% var = "x2" title = title_prefix + r" $x_2$ Training" plot = f"vecm_prediction_{example}_x2_training" vecm.training_plot(title, train, var, [0.7, 0.2], plot)