コード例 #1
0
ファイル: botV4_muldk.py プロジェクト: Wpenga/jddockerbot
async def beanbtn(conv, SENDER, msg):
    '''定义bean脚本按钮'''
    from lib import get_data, show_data
    try:
        markup = [Button.inline(cntr, data=cntr) for cntr in containers]
        markup.append(Button.inline('取消', data='cancel'))
        markup = split_list(markup, 3)
        msg = await client.edit_message(msg, '请选择容器:', buttons=markup)
        date = await conv.wait_event(press_event(SENDER))
        res = bytes.decode(date.data)
        if res == 'cancel':
            msg = await client.edit_message(msg, '对话已取消')
            conv.cancel()
            return None, None
        else:
            text = show_data(get_data(containers[res]))
            #  msg = await conv.send_message(text)
            msg = await client.edit_message(msg, text)
            conv.cancel()
            return None, None
    except exceptions.TimeoutError:
        msg = await client.edit_message(msg, '选择已超时,对话已停止')
        return None, None
    except Exception as e:
        msg = await client.edit_message(
            msg, 'something wrong,I\'m sorry\n' + str(e))
        logger.error('something wrong,I\'m sorry\n' + str(e))
        return None, None
コード例 #2
0
def main(data_name):
    if (data_name == "fer2013"):
        name = "fer2013"
        data_file_path = "../../../data/fer2013/fer2013.csv"
    else:
        name = "icv_mefed"
        train_path = "../../../data/icv_mefed/training/"
        test_path = "../../../data/icv_mefed/testing/"

    # Obtain the data from the path provided
    # data = get_data(name=name, data_file_path=data_file_path)

    # Obtain the data from the path provided
    train_data = get_data(name=name,
                          data_file_path=train_path + 'training.txt')
    training_data, training_labels = make_sets(train_data,
                                               train_path,
                                               extract_landmarks=False)
    test_data = get_data(name=name, data_file_path=test_path + 'testing.txt')
    testing_data, testing_labels = make_sets(test_data,
                                             test_path,
                                             extract_landmarks=False)

    # Generate training and test sets from the data
    # X_train, Y_train, X_test, Y_test = generate_data_split(data=data, num_of_classes=7, name=name)

    # Turn the training set into a numpy array for the classifier
    X_train = np.array(training_data)
    Y_train = np.array(training_labels)
    X_test = np.array(testing_data)
    Y_test = np.array(testing_labels)

    # Pre-process the image data
    X_train, X_test = normalize_data(X_train, X_test)

    # Generate or load trained model
    model = generate_model(X_train, Y_train)

    # Evaluate model
    evaluate_model(model, X_train, Y_train, X_test, Y_test)

    # Save model to disk
    save_model(name="cnn", model=model)
コード例 #3
0
def main(data_name):
    #clf = SVC(kernel='linear', probability=True, tol=1e-3)
    # , verbose = True) #Set the classifier as a support vector machines with polynomial kernel

    if (data_name == "fer2013"):
        name = "fer2013"
        data_file_path = "../../../data/fer2013/fer2013.csv"
    else:
        name = "icv_mefed"
        train_path = '../../../data/icv_mefed/training/'
        test_path = '../../../data/icv_mefed/testing/'

    # Obtain the data from the path provided
    train_data = get_data(name=name,
                          data_file_path=train_path + 'training.txt')
    training_data, training_labels = make_sets(train_data, train_path)
    test_data = get_data(name=name, data_file_path=test_path + 'testing.txt')
    testing_data, testing_labels = make_sets(test_data, test_path)

    # Turn the training set into a numpy array for the classifier
    X_train = np.array(training_data)
    Y_train = np.array(training_labels)
    X_test = np.array(testing_data)
    Y_test = np.array(testing_labels)

    # Pre-process the image data
    X_train, X_test = normalize_data(X_train, X_test)

    # Generate or load trained model
    model = generate_model(X_train, Y_train)

    # Evaluate model
    evaluate_model(model, X_train, Y_train, X_test, Y_test)

    # Save model to disk
    save_model(name="svm", model=model)
コード例 #4
0
 def __init__(self):
     self.loans = get_data()
     self.loans["Unique title"] = [
         "".join([i for i in title
                  if i != "-" and not i.isdigit()]).rstrip().lower()
         for title in self.loans["Loan title"]
     ]
     self.loans["Unique title"] = [
         a[:-5] if (a[-5:] == " loan"
                    and a[:-5] in self.loans["Unique title"].values) else a
         for a in self.loans["Unique title"]
     ]
     self.live_loans = self.loans[self.loans["Loan status"].isin(
         ["Live", "Late", "Processing"])]
     self.i = 0
     self.total_remaining_principal = self.live_loans[
         "Principal remaining"].sum()
コード例 #5
0
else:
    d1 = date(2011,7,28)

d2 = d1 + td(days=8)
d1 = date(2014,3,28)
d2 = date(2014,3,28)
delta = d2 - d1
for i in range(delta.days + 1):
    my_date = d1 + td(days=i)
    fecha = my_date.strftime("%d/%m/%Y")
    print fecha

    buscar(fecha)


filename = os.path.join(config.base_folder, "visitas.db")
db = dataset.connect("sqlite:///" + filename)
table = db['visitas']

print "Getting data from our json file"
items = lib.get_data()

print "Uploading data from our json file"
for i in items:
    if not table.find_one(sha1=i['sha1']):
        print i['sha1'], i['date']
        table.insert(i)

print "Recreating website"
lib.recreate_website()
コード例 #6
0
#!/usr/bin/env python3

from datetime import datetime

import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters

from lib import get_data

if __name__ == "__main__":
    data = get_data()

    data["due_date"] = [datetime.strptime(a, "%Y-%m-%d") for a in data["due_date"]]
    data = data.sort_values(by=["due_date", "loan_part_id"])
    data["profit"] = data["pay_interest"] - data["lender_fee"]
    data["income"] = data["pay_principal"] + data["profit"]
    data["profit_cumulative"] = data["profit"].cumsum()
    data["income_cumulative"] = data["income"].cumsum()

    register_matplotlib_converters()
    plt.plot(data["due_date"], data["income_cumulative"], label="Total")
    plt.plot(data["due_date"], data["profit_cumulative"], label="Interest")
    plt.xlabel("Date")
    plt.ylabel("Income / £")
    plt.legend()
    plt.title("Cumulative income forecast")
    plt.show()