コード例 #1
0
    t = np.arange(0, t_final, dt)
    sol = odeint(derivativePopulation, initialConditions, t)

    t_e_spikes = []
    t_i_spikes = []
    for i in range(num_e):
        ts_e = lib.spikeDetection(t, sol[:, i], spikeThreshold)
        t_e_spikes.append(ts_e)
    index = 5 * num_e
    for i in range(index, index + num_i):
        ts_i = lib.spikeDetection(t, sol[:, i], spikeThreshold)
        t_i_spikes.append(ts_i)

    lib.display_time(time() - start)
    lib.spikeToFile(t_e_spikes, "t_e_spikes.txt")
    lib.spikeToFile(t_i_spikes, "t_i_spikes.txt")

    # fig, ax = pl.subplots(1, figsize=(7, 3))
    # ax[0].plot(t, v, lw=2, c="k")
    # ax[1].plot(t, a, lw=2, c='k')
    # ax[0].set_xlim(min(t), max(t))
    # ax[0].set_ylim(-100, 50)
    # ax[1].set_xlabel("time [ms]")
    # ax[0].set_ylabel("v [mV]")
    # ax[1].set_ylabel("a [mV]")
    # ax[0].set_yticks(range(-100, 100, 50))
    # ax[1].set_ylim(0, 20)
    # pl.tight_layout()
    # pl.savefig("fig_40_3.png")
    # pl.show()
コード例 #2
0
    lfp = np.mean(sol[:, :num_e], axis=1)

    t_e_spikes = []
    t_i_spikes = []
    for i in range(num_e):
        ts_e = lib.spikeDetection(t, sol[:, i], spikeThreshold)
        t_e_spikes.append(ts_e)
    index = 5 * num_e
    for i in range(index, index + num_i):
        ts_i = lib.spikeDetection(t, sol[:, i], spikeThreshold)
        t_i_spikes.append(ts_i)

    lib.display_time(time() - start)

    lib.spikeToFile(t_e_spikes, "t_e_spikes1.txt")
    lib.spikeToFile(t_i_spikes, "t_i_spikes1.txt")
    np.savetxt("lfp1.txt", zip(t, lfp), fmt="%18.6f")

    # --------------------------------------------------------------#
    p_ee = 1.0 / num_e
    p_ei = 1.0 / num_i
    p_ie = 1.0 / num_i
    p_ii = 1.0 / num_i

    u_ee = rand(num_e, num_e)
    u_ei = rand(num_e, num_i)
    u_ie = rand(num_i, num_e)
    u_ii = rand(num_i, num_i)
    g_ee = (g_hat_ee * (u_ee < p_ee) / (num_e * p_ee)).T
    g_ei = (g_hat_ei * (u_ei < p_ei) / (num_e * p_ei)).T