コード例 #1
0
def f11():
    tr_img, tr_lab = choose(train_images, train_labels, 100)
    te_img, te_lab = choose(test_images, test_labels, 50)
    trX, trT = dt.addChannel(
        tr_img.astype(np.float32) / 255, dt.onehot(tr_lab))
    teX, teT = dt.addChannel(
        te_img.astype(np.float32) / 255, dt.onehot(te_lab))
    # teX = teT = None
    # print(trX.shape, trT.shape)
    # print(trX.dtype)
    # return
    ################################################
    ng = NodeGraphAdaptive()
    ng.lrMin = np.float32(1.0E-8)
    ng.lrInit = np.float32(0.0001)
    ################################################
    # ng = NodeGraphBatch()
    ################################################
    # sset(28,28) ---> conv1((3,3), 32) ---> act1 ---> mp1((2,2)) ---> conv2((3,3), 32) ---> act2 ---> mp2((2,2))
    # 		---> flat ---> den1(100) ---> act1 ---> den2(10) ---> act2 ---> loss
    sset = ng.add(StartSet2D((trX.shape[1], trX.shape[2]), trX.shape[3]))
    conv1 = ng.add(Conv2D((3, 3), 32), sset)
    act1 = ng.add(Relu2D(), conv1)
    mp1 = ng.add(MaxPool2D((2, 2)), act1)
    conv2 = ng.add(Conv2D((3, 3), 32), mp1)
    act2 = ng.add(Relu2D(), conv2)
    mp2 = ng.add(MaxPool2D((2, 2)), act2)
    flat = ng.add(Flat2D(), mp2)
    den1 = ng.add(Dense1D(100), flat)
    act3 = ng.add(Sigmoid1D(), den1)
    den2 = ng.add(Dense1D(10), act3)
    act4 = ng.add(Softmax1D(), den2)
    loss = ng.add(OneHotCce1D(), act4)
    ng.compile()
    ng.epochMax = 50
    start = time.time()
    # ng.fit(trX, trT, teX, teT, batchSize=None, verbose=0)
    ng.fit(trX, trT)
    print(f'elapsed: {time.time() - start}')

    print(f'=== graph info ===\n{ng.graphInfo("detail")}')
    print(f'=== summary ===\n{ng.summary()}')

    plt.subplot(221)
    plt.plot(ng.trAccuracy, label='train accuracy')
    if teX is not None:
        plt.plot(ng.teAccuracy, label='test accuracy')
    plt.legend()
    plt.subplot(222)
    plt.plot(ng.trLosses, label='train losses')
    if teX is not None:
        plt.plot(ng.teLosses, label='test losses')
    plt.legend()
    plt.subplot(223)
    plt.plot(ng.appLrs, label='learning rates')
    plt.legend()
    plt.tight_layout()
    plt.show()
コード例 #2
0
def f01():
    trX = dt.addChannel(train_images / 255).astype(np.float32)
    trT = dt.addChannel(dt.onehot(train_labels))
    teX = dt.addChannel(test_images / 255).astype(np.float32)
    teT = dt.addChannel(dt.onehot(test_labels))

    # sset(784) ---> flat ---> den1(784>100) ---> act1() ---> den2(100>10) ---> act2 ---> cce
    ng = NodeGraphAdaptiveMinibatch()
    sset = ng.add(StartSet2D((w, h)))
    flat = ng.add(Flat2D(), sset)
    den1 = ng.add(Dense1D(128), flat)
    act1 = ng.add(Relu1D(), den1)
    den2 = ng.add(Dense1D(10), act1)
    act2 = ng.add(Softmax1D(), den2)
    lossFunc = ng.add(OneHotCce1D(), act2)
    ng.compile()
    ng.lrInit = np.float32(0.0001)
    ng.lrMin = np.float32(1.0e-8)
    ng.epochMax = 50
    start = time.time()
    # ng.fit(trX, trT, verbose=2, batchSize=32)
    # teX = teT = None
    ng.fit(trX, trT, teX, teT, verbose=2, batchSize=6000)
    print(f'elapsed: {time.time() - start}')

    print(f'=== graph info ===\n{ng.graphInfo("detail")}')
    print(f'=== summary ===\n{ng.summary()}')

    plt.subplot(221)
    plt.plot(ng.trAccuracy, label='train accuracy')
    if teX is not None:
        plt.plot(ng.teAccuracy, label='test accuracy')
    plt.legend()
    plt.subplot(223)
    plt.plot(ng.trLosses, label='train losses')
    if teX is not None:
        plt.plot(ng.teLosses, label='test losses')
    plt.legend()
    plt.subplot(224)
    plt.plot(ng.appLrs, label='learning rates')
    plt.legend()
    plt.tight_layout()
    plt.show()
コード例 #3
0
def dim2_quarter_plane_sigmoid():
    print(
        f'******************** {inspect.currentframe().f_code.co_name} ********************'
    )
    grid = 30
    trainX = meshgrid_linear(-1, 1, grid, -1, 1, grid).astype(np.float32)
    n1, n2 = np.array([1, 0]), np.array([0, 1])
    trainTB = np.logical_and(
        np.sum(trainX * n1, axis=1) >= 0,
        np.sum(trainX * n2, axis=1) >= 0)
    trainT = trainTB.astype(int).reshape((-1, 1))
    trainX, trainT = dt.addChannel(trainX, trainT)

    # sset(2) ---> den1(2>2) ---> act1(Sigmoid) ---> den2(2>1) ---> act2(Sigmoid) ---> bce(1)
    ng = NodeGraphAdaptive()
    sset = ng.add(StartSet1D(2, name='sset'))
    den1 = Dense1D(2, name='den1')
    ng.add(den1, sset)
    act1 = ng.add(Sigmoid1D('act1'), den1)
    # act1 = ng.add(Relu('act1'), den1)
    den2 = ng.add(Dense1D(1, name='den2'), act1)
    act2 = ng.add(Sigmoid1D('act2'), den2)
    bce = ng.add(ZeroOneBce1D('bce'), act2)
    den1.initTransf = np.array([[[.3, -.5, 30.2], [-3, 30.2, -.5]]],
                               np.float32)
    den2.initTransf = np.array([[[-28.3, 19.0, 19.0]]], np.float32)
    # # relu
    # den1.initW = np.array([[0.04065937, 0.83962917], [6.2536874, 8.23629256], [-8.99669535, 0.01755958]], np.float32)
    # den2.initW = np.array([[-7.14937919, -10.94093724, 8.40722765]], np.float32).T
    ng.lossMax = np.float32(.00001)
    ng.compile()
    ng.epochMax = 1000
    ng.lrInit = np.float32(0.1)
    ng.fit(trainX, trainT)

    print(f'------------ graph info ---------\n{ng.graphInfo()}')
    print(f'------------ summary ------------\n{ng.summary()}')

    quad = trainX[trainTB]
    comp = trainX[~trainTB]
    plt.subplot(221)
    plt.title('trainX')
    plt.plot(quad[:, 0, 0], quad[:, 1, 0], '+k')
    plt.scatter(comp[:, 0, 0], comp[:, 1, 0], s=1, c='k')
    plt.subplot(222)
    plt.title('activation')
    ng.predict(quad)
    plt.plot(act1.prY[:, 0, 0], act1.prY[:, 1, 0], '+k')
    ng.predict(comp)
    plt.scatter(act1.prY[:, 0, 0], act1.prY[:, 1, 0], s=1, c='k')
    draw_line(den2.B[0], den2.W[:, :, 0], 'r', '-', -1, 1, -1, 1)
    plt.subplot(223)
    x0, x1, y0, y1 = -2, 2, -2, 2
    X, Y = np.meshgrid(np.linspace(x0, x1, 30), np.linspace(y0, y1, 30))
    Z = np.zeros_like(X)
    for i in range(Z.shape[0]):
        for j in range(Z.shape[1]):
            p = dt.addChannel(np.array([[X[i, j], Y[i,
                                                    j]]])).astype(np.float32)
            Z[i, j] = ng.predict(p)[0, 0, 0]
    cs = plt.contour(X, Y, Z, [.5])
    plt.clabel(cs, inline=True)
    plt.subplot(224)
    plt.title('loss')
    plt.plot(ng.trLosses)
    plt.tight_layout()
    plt.show()
コード例 #4
0
ファイル: Xor32.py プロジェクト: ggorr/Machine-Learning
def xor2(index=0):
    print(
        f'******************** {inspect.currentframe().f_code.co_name} ********************'
    )
    trainX = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], np.float32)
    trainT = np.array([[0, 1], [1, 0], [1, 0], [0, 1]])
    testX = np.array([[.5, .5]], np.float32)
    testT = np.array([[0, 1]])
    trainX, trainT = dt.addChannel(trainX), dt.addChannel(trainT)
    testX, testT = dt.addChannel(testX), dt.addChannel(testT)

    def f0():
        # sset(2) ---> fset1(2>2) ---> act1(Sigmoid) ---> fset2(2>2) ---> act2(Softmax) ---> cce(2)
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        ####### Adaptive ###############
        ng = NodeGraphAdaptive()
        ####### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))
        fset1 = ng.add(Dense1D(2, name='fset1'), sset)
        act1 = ng.add(Sigmoid1D('act1'), fset1)
        fset2 = ng.add(Dense1D(2, name='fset2'), act1)
        act2 = ng.add(Softmax1D('act2'), fset2)
        lossFunc = ng.add(OneHotCce1D('cce'), act2)

        ng.epochMax = 10000

        ng.compile()

        start = time.time()
        # ng.fit(trainX, trainT)
        ng.fit(trainX, trainT, testX, testT)
        print(f'elapsed: {time.time() - start}')

        print(f'trainY:\n{lossFunc.trY[:,:,0]}')
        return ng

    def f1():
        # sset(2) ----> fset11(2->2) --> act11(Sigmoid) --> fset12(2->1) ----> con((1,2)>(1,2)) ---> flat ---> act2(Softmax) ---> cce(2)
        #          \													   /
        #           --> fset21(2->2) --> act21(Sigmoid) --> fset22(2->1) -
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        ####### Adaptive ###############
        ng = NodeGraphAdaptive()
        ####### Common ###############

        sset = ng.add(StartSet1D(2, name='sset'))
        fset11 = ng.add(Dense1D(2, name='fset11'), sset)
        act11 = ng.add(Sigmoid1D('act11'), fset11)
        fset12 = ng.add(Dense1D(1, name='fset12'), act11)

        fset21 = ng.add(Dense1D(2, name='fset21'), sset)
        act21 = ng.add(Sigmoid1D('act21'), fset21)
        fset22 = ng.add(Dense1D(1, name='fset22'), act21)

        con = ng.add(Conv1D(1, 2, biased=True, name='con'), fset12, fset22)
        flat = ng.add(Flat1D('flt'), con)
        act2 = ng.add(Softmax1D('act2'), flat)
        # lossFunc = ng.add(Mse1D('mse'), act2)
        lossFunc = ng.add(OneHotCce1D('cce'), act2)
        ng.epochMax = 10000
        ng.compile()

        # trainT = np.array([[0.3, .7], [1, 0], [1, 0], [0.3, .7]], float)
        start = time.time()
        # ng.fit(trainX, trainT)
        ng.fit(trainX, trainT, testX, testT, batchSize=2)
        print(f'elapsed: {time.time() - start}')
        print(f'trainY:\n{lossFunc.trY[:,:,0]}')
        return ng

    def f2():
        # sset1(1) ----> fset11(1->2) --> act11(Sigmoid)  ------> con((2, 2)>(1,2)) ---> flt ---> act2(Softmax) ---> cce(2)
        #          											 /
        # sset2(1) ----> fset21(1->2) --> act21(Sigmoid)  --
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        # ng.lr = .001
        ####### Adaptive ###############
        ng = NodeGraphAdaptive()
        ng.lrMin = .001
        ####### Common ###############
        sset1 = ng.add(StartSet1D(1, name='sset1'))
        sset2 = ng.add(StartSet1D(1, name='sset2'))

        fset11 = ng.add(Dense1D(3, name='fset11'), sset1)
        act11 = ng.add(Sigmoid1D('act11'), fset11)

        fset21 = ng.add(Dense1D(3, name='fset21'), sset2)
        act21 = ng.add(Sigmoid1D('act21'), fset21)

        con = ng.add(Conv1D(3, 2, biased=True, padding=0, name='con'), act11,
                     act21)
        flt = ng.add(Flat1D('flt'), con)
        # flt = ng.add(Flat1D('flt'), fset12, fset22)

        act2 = ng.add(Softmax1D('act2'), flt)
        # lossFunc = MeanSquare('loss')
        lossFunc = ng.add(OneHotCce1D('cce'), act2)

        ng.epochMax = 10000
        ng.compile()

        start = time.time()
        ng.fit((trainX[:, :1], trainX[:, 1:]), trainT)
        # ng.fit((trainX[:, :1], trainX[:, 1:]), trainT, (testX[:, :1], testX[:, 1:]), testT)
        print(f'elapsed: {time.time() - start}')
        print(f'trainY:\n{lossFunc.trY[:,:,0]}')
        print(con.B)
        return ng

    def f3():
        # sset(2) ----> fset11(2->4) --> act11(Sigmoid) --> fset12(2->1) -----> act12(Sigmoid) -----> flat ---> mse(2)
        #			\																			 /
        #            -> fset21(2->12) --> act21(Relu) --> fset22(2->1) -----> act22(Sigmoid) ---/
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        # ng.lr = .01
        ####### Adaptive ###############
        ng = NodeGraphAdaptive()
        ng.lrInit = .5
        ng.lrMin = .01
        ####### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))

        fset11 = ng.add(Dense1D(4, name='fset11'), sset)
        act11 = ng.add(Sigmoid1D('act11'), fset11)
        fset12 = ng.add(Dense1D(1, name='fset12'), act11)
        act12 = ng.add(Sigmoid1D('act12'), fset12)

        fset21 = ng.add(Dense1D(12, name='fset21'), sset)
        act21 = ng.add(Relu1D('act21'), fset21)
        fset22 = ng.add(Dense1D(1, name='fset22'), act21)
        act22 = ng.add(Sigmoid1D('act22'), fset22)
        flat = ng.add(Flat1D('flat'), act12, act22)
        lossFunc = ng.add(Mse1D('mse'), flat)

        ng.epochMax = 10000

        ng.compile()

        start = time.time()
        ng.fit(trainX, trainT)
        # ng.fit(trainX, trainT, testX, testT)
        print(f'elapsed: {time.time() - start}')

        print(f'trainY:\n{lossFunc.trY[:,:,0]}')
        return ng

    def f4():
        # sset(2) ----> fset11(2->4) --> act11(Sigmoid) ---> mp1(4->2) -----> den(4->2) ---> act(Softmax) ---> cce(2)
        #			\									                 /
        #            -> fset21(2->12) --> act21(Relu) --->  mp2(12->2) --
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        # ng.lr = .01
        ####### Adaptive ###############
        ng = NodeGraphAdaptiveMinibatch()
        ng.lrInit = 1.0E-3
        ng.lrMin = 1.0E-3
        ####### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))

        fset11 = ng.add(Dense1D(4, name='fset11'), sset)
        act11 = ng.add(Sigmoid1D(name='act11'), fset11)
        mp1 = ng.add(MaxPool1D(2, name='mp1'), act11)

        fset21 = ng.add(Dense1D(12, name='fset21'), sset)
        act21 = ng.add(Relu1D(name='act21'), fset21)
        mp2 = ng.add(MaxPool1D(6, name='mp2'), act21)

        flat = ng.add(Flat1D(name='flat'), mp1, mp2)
        den = ng.add(Dense1D(2, name='den'), flat)
        act = ng.add(Softmax1D(name='sm'), den)
        lossFunc = ng.add(OneHotCce1D(name='cce'), act)

        ng.epochMax = 5000

        ng.compile()

        start = time.time()
        # ng.fit(trainX, trainT, batchSize=1)
        ng.fit(trainX, trainT, testX, testT, batchSize=4)
        print(f'elapsed: {time.time() - start}')

        print(f'trainY:\n{ng.predict(trainX)[:,:,0]}')
        return ng

    ng = eval(f'f{index}()')
    print(f'=== graph info ===\n{ng.graphInfo("detail")}')
    print(f'=== summary ===\n{ng.summary()}')

    pt.contourDouble(ng, 231, 232, [-0.5, 1.5], [-0.5, 1.5])
    plt.subplot(234)
    plt.title('loss')
    pt.plotLoss(ng)
    plt.subplot(235)
    plt.title('accuracy')
    pt.plotAccuracy(ng)
    plt.subplot(236)
    plt.title('learning rates')
    if isinstance(ng, NodeGraphAdaptive) or isinstance(
            ng, NodeGraphAdaptiveMinibatch):
        plt.plot(ng.appLrs)
    plt.tight_layout()
    plt.show()
コード例 #5
0
ファイル: Xor32.py プロジェクト: ggorr/Machine-Learning
def xor1(index=0):
    print(
        f'******************** {inspect.currentframe().f_code.co_name} ********************'
    )
    trainX = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], np.float32)
    trainX = dt.addChannel(trainX)
    trainT = np.array([[0], [1], [1], [0]])
    trainT = dt.addChannel(trainT)
    testX = dt.addChannel(np.array([[.5, .5], [1.5, 1.5]], np.float32))
    testT = dt.addChannel(np.array([[0], [1]]))

    # print(trainX.dtype, trainT.dtype)

    def f0():
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        # sset(2) ---> fset1(2>2) ---> act1(Sigmoid) ---> fset2(2>1) ---> act2(Sigmoid) ---> bce(1)
        ##### Adaptive ##########
        ng = NodeGraphAdaptive()
        ##### Batch #############
        # ng = NodeGraphBatch()
        # ng.lr = np.float32(0.5)
        # ng.mom = 0.0
        ##### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))
        fset1 = ng.add(Dense1D(2, name='fset1'), sset)
        act1 = ng.add(Sigmoid1D('act1'), fset1)
        fset2 = ng.add(Dense1D(1, name='fset2'), act1)
        act2 = ng.add(Sigmoid1D('act2'), fset2)
        lossFunc = ng.add(ZeroOneBce1D('bce'), act2)
        ng.compile()

        # ng.reg = Lasso(0.001)
        ng.epochMax = 10000

        start = time.time()
        ng.fit(trainX, trainT)
        # ng.fit(trainX, trainT, testX, testT)
        print(f'elapsed: {time.time() - start}')

        if isinstance(ng, NodeGraphAdaptive):
            print('epoch: ', ng.appLrs.shape[0])
        print('trainY[:,0,0]:', lossFunc.trY[:, 0, 0])
        print('testY:', lossFunc.teY)
        return ng

    def f1():
        # sset(2) ----> fset11(2>2) --> act11(Sigmoid) ----> con1((2,2)>(1,1)) ---> act2(Sigmoid) ---> bce(1)
        #		   \								    /
        #           --> fset12(2>2) --> act12(Relu) ---
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        ng = NodeGraphBatch()
        ng.mom = np.float32(0.01)
        ng.reg = Ridge(0.1)
        ####### Adaptive ###############
        # ng = NodeGraphAdaptive()
        # ng.lrMin = np.float32(1.0e-2)
        ####### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))
        fset11 = ng.add(Dense1D(2, name='fset11'), sset)
        act11 = ng.add(Sigmoid1D('act11'), fset11)
        fset12 = ng.add(Dense1D(2, name='fset12'), sset)
        act12 = ng.add(Relu1D('act12'), fset12)
        con1 = ng.add(Conv1D(2, 1, biased=True, name='con1'), act11, act12)
        # fset2 = ng.add(Dense1D(1,2, 'fset2'), act11, act12)
        act2 = ng.add(Sigmoid1D('act2'), con1)
        lossFunc = ng.add(ZeroOneBce1D('bce'), act2)
        ng.compile()

        ng.epochMax = 5000
        # ng.reg = Ridge(0.1)

        start = time.time()
        ng.fit(trainX, trainT)
        # ng.fit(trainX, trainT, testX, testT)
        print(f'elapsed: {time.time() - start}')

        print('trainY[:,0, 0]:', lossFunc.trY[:, 0, 0])
        # print(ng.predict(trainX))

        # print(fset11.Weight)
        # print(fset12.Weight)
        # print(fset2.Weight)

        return ng

    def f2():
        # sset(2) ----> fset11(2>5) ----> act11(Sigmoid) ----> con1((5,2)>(5,1)) ---> act2(Sigmoid) ---> den2(5>1) ---> act3(Sigmoid) ---> bce(1)
        #			\									  /
        #			 -> fset12(2>5) ----> act12(Relu) ----
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        # ng.mom = np.float32(0.1)
        # ng.reg = Ridge(0.01)
        ####### Adaptive ###############
        ng = NodeGraphAdaptive()
        ng.lrMin = np.float32(1.0e-2)
        # ng.reg = Ridge(0.01)
        ####### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))
        fset11 = ng.add(Dense1D(5, name='fset11'), sset)
        fset12 = ng.add(Dense1D(5, name='fset12'), sset)
        act11 = ng.add(Sigmoid1D('act11'), fset11)
        act12 = ng.add(Relu1D('act12'), fset12)
        con1 = ng.add(Conv1D(3, 1, biased=True, name='con1'), act11, act12)
        act2 = ng.add(Sigmoid1D('act2'), con1)
        den2 = ng.add(Dense1D(1, name='den1'), act2)
        act3 = ng.add(Sigmoid1D('act3'), den2)
        # lossFunc = Mse('loss')
        lossFunc = ng.add(ZeroOneBce1D('bce'), act3)
        ng.compile()

        ng.epochMax = 10000
        # ng.reg = Ridge(0.1)

        # fset2.initW = np.random.rand(5, 1) * 10 - 5

        start = time.time()
        ng.fit(trainX, trainT)
        # ng.fit(trainX, trainT, testX, testT)
        print(f'elapsed: {time.time() - start}')

        print('trainY[:, 0, 0]:', lossFunc.trY[:, 0, 0])
        # print(ng.predict(trainX))

        # print(fset2.gradX)
        # print(mp.gradY)
        # print(mp.trInd)
        # print(mp.gradX)
        print('======== B ==========')
        print(con1.B)
        print('======== W ==========')
        print(con1.W)
        return ng

    def f3():
        # sset(2) ----> fset11(2>6) ----> act11(Sigmoid) ----> mp((6,2)>(3,2)) ---> flat((3,2)>6) ---> den2(10>1) ---> act3(Sigmoid) ---> bce(1)
        #			\									  /
        #			 -> fset12(2>6) ----> act12(Relu) ----
        print(
            f'******************** {inspect.currentframe().f_code.co_name} ********************'
        )
        ####### Batch ###############
        # ng = NodeGraphBatch()
        ####### Adaptive ###############
        ng = NodeGraphAdaptiveMinibatch()
        ng.lrMin = np.float32(1.0e-2)
        ####### Common ###############
        sset = ng.add(StartSet1D(2, name='sset'))
        fset11 = ng.add(Dense1D(6, name='fset11'), sset)
        fset12 = ng.add(Dense1D(6, name='fset12'), sset)
        act11 = ng.add(Sigmoid1D('act11'), fset11)
        act12 = ng.add(Relu1D('act12'), fset12)
        mp = ng.add(MaxPool1D(2, 'mp'), act11, act12)
        fl1 = ng.add(Flat1D('fl1'), mp)
        den2 = ng.add(Dense1D(1, name='den1'), fl1)
        act3 = ng.add(Sigmoid1D('act3'), den2)
        # lossFunc = Mse('loss')
        lossFunc = ng.add(ZeroOneBce1D('bce'), act3)
        ng.compile()

        ng.epochMax = 1000
        # ng.reg = Ridge(0.1)

        # fset2.initW = np.random.rand(5, 1) * 10 - 5

        start = time.time()
        # ng.fit(trainX, trainT)
        ng.fit(trainX, trainT, testX, testT, batchSize=1)
        print(f'elapsed: {time.time() - start}')

        print(ng.predict(trainX)[:, 0, 0])

        # print(fset2.gradX)
        # print(mp.gradY)
        # print(mp.trInd)
        # print(mp.gradX)
        return ng

    ng = eval(f'f{index}()')

    print(f'=== graph info ===\n{ng.graphInfo("detail")}')
    print(f'=== fit summary ===\n{ng.summary()}')

    plt.subplot(221)
    pt.contour(ng, [-0.5, 1.5],
               [-0.5, 1.5])  # 'xor, nodes = {}'.format(seq.getNodes()))
    plt.subplot(222)
    plt.title('accuracy')
    pt.plotAccuracy(ng)
    plt.subplot(223)
    plt.title('loss')
    pt.plotLoss(ng)
    plt.subplot(224)
    if isinstance(ng, NodeGraphAdaptive):
        plt.title('learning rates')
        plt.plot(ng.appLrs)
    plt.tight_layout()
    plt.show()
コード例 #6
0
def f0():
	from sklearn import datasets
	wine = datasets.load_wine()
	data = (wine.data - np.mean(wine.data, axis=0)) / np.std(wine.data, axis=0)
	###########################################################################################
	trX, trT, teX, teT = dt.splitTrainTest(data, wine.target)
	trainX = trX.astype(np.float32)
	trainT = dt.onehot(trT)
	testX = teX.astype(np.float32)
	testT = dt.onehot(teT)
	trainX, trainT, testX, testT = dt.addChannel(trainX, trainT, testX, testT)
	###########################################################################################
	# trainX, testX = data, None
	# trainT, testT = dt.vectorizeTarget(wine.target), None
	# trainX, trainT = dt.addChannel(trainX, trainT)
	###########################################################################################

	# sset(13) ---> den0(13>20) ---> act0(sigmoid) ---> mp0(20>5) --> den1(5>3) ---> act1(softmax) ---> cce
	####### Batch ###############
	# ng = NodeGraphBatch()
	####### Adaptive ###############
	ng = NodeGraphAdaptiveMinibatch()
	ng.lrMin = np.float32(0.001)
	ng.lrInit = np.float32(.1)
	####### Common ###############
	sset = ng.add(StartSet1D(trainX.shape[1]))  # ss0
	den0 = ng.add(Dense1D(20), sset)  # dn0
	act0 = ng.add(Sigmoid1D(), den0)  # ac0
	mp0 = ng.add(MaxPool1D(4), act0)
	den1 = ng.add(Dense1D(3), mp0)  # dn1
	act1 = ng.add(Softmax1D(), den1)  # ac1
	lossFunc = ng.add(OneHotCce1D(), act1)  # cce
	ng.compile()
	ng.epochMax = 1000

	start = time.time()
	# ng.fit(trainX, trainT)
	ng.fit(trainX, trainT, testX, testT, batchSize=118//5)
	print('elapsed:', time.time() - start)

	print('=== graph info ===\n' + ng.graphInfo('detail'))
	print('=== summary ===\n' + ng.summary())

	trainY = ng.predict(trainX)
	plt.subplot(331)
	plt.title('accuracy')
	pt.plotAccuracy(ng)
	plt.subplot(332)
	plt.title('erros')
	pt.plotLoss(ng)
	plt.subplot(333)
	if isinstance(ng, NodeGraphAdaptive) or isinstance(ng, NodeGraphAdaptiveMinibatch):
		plt.plot(ng.appLrs)
	plt.title('applied learning rate')
	testY = lossFunc.teY
	for i in range(3):
		plt.subplot(334 + i)
		plt.plot(trainT[:, i, 0])
		plt.plot(trainY[:, i, 0])
		plt.title(f'train {i}')
		if testX is not None:
			plt.subplot(337 + i)
			plt.plot(testT[:, i, 0])
			plt.plot(testY[:, i, 0])
			plt.title(f'test {i}')
	plt.tight_layout()
	plt.show()
コード例 #7
0
mp3 = ng.add(MaxPool2D((2, 2)), relu3)

conv4 = ng.add(Conv2D((3, 3), 8), mp3)
conv4.initB, conv4.initW = B2.copy(), W2.copy()
relu4 = ng.add(Relu2D(), conv4)
mp4 = ng.add(MaxPool2D((2, 2)), relu4)

conv5 = ng.add(Conv2D((3, 3), 8), mp4)
conv5.initB, conv5.initW = B2.copy(), W2.copy()
relu5 = ng.add(Relu2D(), conv5)
mp5 = ng.add(MaxPool2D((2, 2)), relu5)

flat = ng.add(Flat2D(), mp5)
loss = ng.add(Mse1D(), flat)
ng.compile()
x = dt.addChannel(np.array([gray]))
y = dt.addChannel(np.zeros((1, 1), np.float32))
ng.epochMax = 0
ng.fit(x, y)
mp1out = mp1.trY[0, :, :].sum(axis=2)
mp1out /= mp1out.max()
mp2out = mp2.trY[0, :, :].sum(axis=2)
mp2out /= mp2out.max()
mp3out = mp3.trY[0, :, :].sum(axis=2)
mp3out /= mp3out.max()
mp4out = mp4.trY[0, :, :].sum(axis=2)
mp4out /= mp4out.max()
mp5out = mp5.trY[0, :, :].sum(axis=2)
mp5out /= mp5out.max()
print(mp1out.shape)
print(mp2out.shape)
コード例 #8
0
ファイル: Iris32.py プロジェクト: ggorr/Machine-Learning
import time
import warnings

import matplotlib.pyplot as plt

import lib32.DataTools as dt
import lib32.PlotTools as pt
from lib32.NodeGraph import *

from sklearn import datasets

iris = datasets.load_iris()
data = (iris.data - np.mean(iris.data, axis=0)) / np.std(iris.data, axis=0)
##############################################################################
trX, trT, teX, teT = dt.splitTrainTest(data, iris.target, .7, 1)
trainX, testX = trX.astype(np.float32), teX.astype(np.float32)
trainT, testT = dt.onehot((trT, teT))
trainX, trainT, testX, testT = dt.addChannel(trainX, trainT, testX, testT)
##############################################################################
# trainX, testX = data.astype(np.float32), None
# trainT, testT = dt.onehot(iris.target, np.float32), None
# trainX, trainT = dt.addChannel(trainX, trainT)
##############################################################################
# print(trainX.dtype, trainT.dtype, testX.dtype, testT.dtype)


def f0():
    # sset(4) ---> den1(4>4) ---> act1(sigmoid) ---> den2(4>3) ---> act2(softmax) ---> cce
    ####### Batch ###############
    # ng = NodeGraphBatch()
    # ng.lr = np.float32(.01)
コード例 #9
0
import time
from cProfile import Profile
from pstats import Stats

import numpy as np
import lib32.DataTools as dt
from lib32.NodeGraph import *
import matplotlib.pyplot as plt

train_labels, train_images = dt.read_mnist_train()
test_labels, test_images = dt.read_mnist_test()
ntr, nte = train_images.shape[0], test_images.shape[0]
w, h = train_images.shape[1], train_images.shape[2]


# print(images.shape, labels.shape)
def choose(images, labels, n):
    img = np.empty((10 * n, w, h))
    lab = np.empty(10 * n, int)
    count = np.zeros(10, int)
    i = j = 0
    while not np.all(count == n):
        if count[labels[i]] < n:
            count[labels[i]] += 1
            lab[j] = labels[i]
            img[j] = images[i]
            j += 1
        i += 1
    return img, lab