コード例 #1
0
 def update_pytomo_rrd(self):
     '''Insert data from the list of tuples (timestamp, parameter1, ...)
     to the rrd.
     '''
     if not self.has_values:
         config_pytomo.LOG.warn('RRD data update aborted')
         return 1
     # insert into rrd all the values for the extracted parameters to plot
     # data[][TIMESTAMP_POSITION] is the timestamp
     # data[][:TIMESTAMP_POSITION] represents the parameters to plot
     for row in self.data:
         # transform timestamp to epoch in local time
         # TODO: check problems related to timezone
         timestamp = row[TIMESTAMP_POSITION]
         parameter_values = row[:TIMESTAMP_POSITION]
         # function used in order to take advantage of the * operator and
         # retrieve all the elements of an argument
         identity = lambda *x: x
         try:
             rrdtool.update(self.rrd_file,
                             update_data_types(parameter_values) %
                             identity(lib_database.time_to_epoch(timestamp),
                                 *format_null_values(*parameter_values)))
         except rrdtool.error, mes:
             config_pytomo.LOG.debug('Could not update the rrd with error'
                                     ' %s' % mes)
             continue
         #config_pytomo.LOG.debug('Updated rrd data: (%s, %s)' %
         #       (timestamp, str(format_null_values(*parameter_values))))
         for index, parameter in enumerate(parameter_values):
             if parameter is None:
                 self.unknown_values[index] += 1
コード例 #2
0
ファイル: lib_rrdtools.py プロジェクト: Jamlum/pytomo
 def update_pytomo_rrd(self):
     '''Insert data from the list of tuples (timestamp, parameter1, ...)
     to the rrd.
     '''
     if not self.has_values:
         config_pytomo.LOG.warn('RRD data update aborted')
         return 1
     # insert into rrd all the values for the extracted parameters to plot
     # data[][TIMESTAMP_POSITION] is the timestamp
     # data[][:TIMESTAMP_POSITION] represents the parameters to plot
     for row in self.data:
         # transform timestamp to epoch in local time
         # TODO: check problems related to timezone
         timestamp = row[TIMESTAMP_POSITION]
         parameter_values = row[:TIMESTAMP_POSITION]
         # function used in order to take advantage of the * operator and
         # retrieve all the elements of an argument
         identity = lambda *x: x
         try:
             rrdtool.update(self.rrd_file,
                             update_data_types(parameter_values) %
                             identity(lib_database.time_to_epoch(timestamp),
                                 *format_null_values(*parameter_values)))
         except rrdtool.error, mes:
             config_pytomo.LOG.debug('Could not update the rrd with error'
                                     ' %s' % mes)
             continue
         #config_pytomo.LOG.debug('Updated rrd data: (%s, %s)' %
         #       (timestamp, str(format_null_values(*parameter_values))))
         for index, parameter in enumerate(parameter_values):
             if parameter is None:
                 self.unknown_values[index] += 1
コード例 #3
0
def compute_average_values(data):
    '''Function to return a tuple (start_crawl_time, end_crawl_time,
    nr_videos, average_ping, average_download_time,
    average_download_interruptions)
    '''
    # data is retrieved sorted from the database
    start_crawl_time = data[0][TIMESTAMP_POSITION]\
                        [:MAX_TIMESTAMP_LENGTH]
    end_crawl_time = data[-1][TIMESTAMP_POSITION]\
                        [:MAX_TIMESTAMP_LENGTH]
    # total crawl time (sync time is added at the beginning and end for
    # the plots)
    total_time = (datetime.fromtimestamp(
        lib_database.time_to_epoch(data[-1][TIMESTAMP_POSITION])) -
                  datetime.fromtimestamp(
                      lib_database.time_to_epoch(data[0][TIMESTAMP_POSITION])))
    # each row in the dataset represents a video
    nr_videos = len(data)
    # filter values that are not None (can be zero)
    not_none = lambda x: x is not None
    # for some videos data cannot be retrieved
    # average download time represents the average of DownloadTime
    average_list = filter(
        not_none, map(itemgetter(AVERAGE_PARAM.index('DownloadTime')), data))
    average_download_time = average(average_list, len(average_list))
    # average download interruptions represents the average of
    # DownloadInterruptions
    average_list = filter(
        not_none,
        map(itemgetter(AVERAGE_PARAM.index('DownloadInterruptions')), data))
    average_download_interruptions = average(average_list, len(average_list))
    # average ping represents the average of PingAvg
    average_list = filter(
        not_none, map(itemgetter(AVERAGE_PARAM.index('PingAvg')), data))
    average_ping = average(average_list, len(average_list))
    return (total_time, start_crawl_time, end_crawl_time, nr_videos,
            average_download_time, average_download_interruptions,
            average_ping)
コード例 #4
0
ファイル: lib_io.py プロジェクト: Jamlum/pytomo
def compute_average_values(data):
    '''Function to return a tuple (start_crawl_time, end_crawl_time,
    nr_videos, average_ping, average_download_time,
    average_download_interruptions)
    '''
    # data is retrieved sorted from the database
    start_crawl_time = data[0][TIMESTAMP_POSITION]\
                        [:MAX_TIMESTAMP_LENGTH]
    end_crawl_time = data[-1][TIMESTAMP_POSITION]\
                        [:MAX_TIMESTAMP_LENGTH]
    # total crawl time (sync time is added at the beginning and end for
    # the plots)
    total_time = (datetime.fromtimestamp(lib_database.time_to_epoch(
                                    data[-1][TIMESTAMP_POSITION])) -
                  datetime.fromtimestamp(lib_database.time_to_epoch(
                                    data[0][TIMESTAMP_POSITION])))
    # each row in the dataset represents a video
    nr_videos = len(data)
    # filter values that are not None (can be zero)
    not_none = lambda x: x is not None
    # for some videos data cannot be retrieved
    # average download time represents the average of DownloadTime
    average_list = filter(not_none,
                    map(itemgetter(AVERAGE_PARAM.index('DownloadTime')), data))
    average_download_time = average(average_list, len(average_list))
    # average download interruptions represents the average of
    # DownloadInterruptions
    average_list = filter(not_none, map(itemgetter(
                        AVERAGE_PARAM.index('DownloadInterruptions')), data))
    average_download_interruptions = average(average_list, len(average_list))
    # average ping represents the average of PingAvg
    average_list = filter(not_none, map(itemgetter(
                            AVERAGE_PARAM.index('PingAvg')), data))
    average_ping = average(average_list, len(average_list))
    return (total_time, start_crawl_time,
            end_crawl_time, nr_videos, average_download_time,
            average_download_interruptions, average_ping)