def main(argv): '''Basic reading in of commandline options.''' help_line = '''\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** JUST BETA VERSION AT THE MOMENT ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ''' comm_str = 'fat_mvm_review.py ' file_in = '' pref_out = '' thr_out = 10**6 TRUNC = 0 try: opts, args = getopt.getopt( argv, "hTf:p:t:", ["help", "Trunc_labs", "file_in=", "prefix=", "thr_out="]) except getopt.GetoptError: print "** Error reading options. Try looking at the helpfile:" print "\t $ fat_mvm_review.py -h\n" sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print help_line sys.exit() elif opt in ("-f", "--file_in"): file_in = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-p", "--prefix"): pref_out = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-t", "--thr_out"): thr_out = float(arg) comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-T", "--Trunc_labs"): TRUNC = 1 comm_str = GR.RecapAttach(comm_str, opt, arg) if not (file_in): print "** ERROR: missing an input (*MVM.txt) file." print "\t Need to use either '-f' or '--file_in'." sys.exit() # not requisite to have output prefix #if not(pref_out): # print "** ERROR: missing an output prefix." # print "\t Need to use either '-p' or '--pref_out'." # sys.exit() return comm_str, file_in, pref_out, thr_out, TRUNC
def main(argv): '''Basic reading in of commandline options.''' help_line = '''\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ++ Oct, 2014. Written by PA Taylor (UCT/AIMS). ++ Perform factor analysis on quantitative CSV data to find latent variables. This program is designed to help prep subject data (clinical, neurophysiological, test scores, etc.) for statistical analysis, for example using 3dMVM (written by G. Chen). * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * This program reads in a group-worth of information from a CSV file (which could be dumped from a study spreadsheet), and calculates latent variables using factor analysis. Default is to perform factor analysis for all quantitative variables in the CSV file, as well as for all subjects. If you want a subset of variables to be used only, you can input these via commandline list or as a file. If you want a subset of subjects used, this can be selected by globbing a list of *netcc or *.grid files from 3dNetCorr or 3dTrackID creation, respectively (or, you can always edit your CSV file to chop out subjects). The output CSV file is a copy of the input, with the set of variables input into factor analysis *replaced* by the estimated latent factors. NB: *Currently*, columns of data with missing data (->'NA') will be ignored during factor analysis processing but passed along to the output. This might change over time, moving to a point of analysis phase space where data with NA values can somehow be treated in the formation of latent variables. Here, Factor analysis is performed using the existing R function 'factanal()', as well as the function 'paran()' if you choose to use parallel analysis to determine the number of factors from the data. For more on those methods, please read their individual R documentations. Each function has maaany available options; for the most part, we use default settings, but also allow some further manipulation. If you really need some other parameter settings to be directly input from the Python commandline, let the author know. Two important parameters currently used in the factanal() function are: scores='regression', and rotation="varimax". If you have strong opinions about this, then great. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * OUTPUT: + new *.csv file, with a set of quantitative variables replaced by latent factors. + (option) an image file of Horn's Test, if you use parallel analysis to determine the number of latent factors. + a file recording loading factors of input variables for each output latent variable, so you can try to interpret the 'meaning' of the latent variables. Buon fortuna... * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TO USE (from a terminal commandline):\n $ fat_lat_csv.py -p PREFIX -c CSV_FILE \\ { -m MATR_FILES | -l LIST } \\ { -v, --vars='X Y Z ...' | -f VAR_FILE } \\ -N \\ -L FACLAB -C NLOAD -n NF \\ -P PERC -I N_ITER \\ -g -i ITYPE where: -p, --prefix=PREFIX :prefix for output files. -c, --csv_in=CSV_FILE :name of comma-separated variable (CSV) file for input. Format notes: each row contains a single subject\'s data, and the first row contains column/variable labels (with no spaces in them); first column is subject IDs (no spaces); and factor/categorical variables (gender, etc.) should be recorded with at least one character (i.e., M/F and not 0/1). I will replace spaces in the first row and column. -m, --matr_in=MATR_FILES :[optional here-- can be used to select a subset of subjects in the CSV file; otherwise all CSV subjects are used in computations] one way of providing the set of matrix (*.grid or *.netcc) files- by searchable path. This can be a globbable entry in quotes containing wildcard characters, such as 'DIR1/*/*000.grid'. If this option is used instead of '-l', below, then this program tries to match each CSV subj ID to a matrix file by finding which matrix file path in the MATR_FILES contains a given ID string; this method may not always find unique matches, in which case, use '-l' approach. -l, --list_match=LIST :[optional here (see previous option)] another way of inputting the matrix (*.grid or *.netcc) files-- by explicit path, matched per file with a CSV subject ID. The LIST text file contains two columns: col 1: path to subject matrix file. col 2: CSV IDs, (first line can be a '#'-commented one). -v, --vars='X Y Z ...' :one method for supplying a list of quantitative variables from which one wants to calculate latent variables. Names must be separated with whitespace. If no list of variables is input, then *all* quantitative variables in the CSV_FILE are used. -f, --file_vars=VAR_FILE :the second method for supplying a list of quantitative variables. VAR_FILE is a text file with a single column of variable names. If no list of variables is input, then *all* quantitative variables in the CSV_FILE are used. -N, --NA_warn_off :switch to turn off the automatic warnings as the data table is created. (Default is to warn.) -L, --Label_factors=FACLAB :Prefix string for latent variable column in the output CSV, so that the names are: 'FACLAB_01', 'FACLAB_02', etc. (Default: 'FACTOR'.) -C, --Count_loads=NLOAD :When reporting loading factors for each latent factor (that is, essentially what is the correlation of the most-related input variables to this particular factor), report NLOAD many values. If NLOAD<0, then ALL get reported. (Default: 5.) -n, --num_facs=NF :specify the number of latent factors 'NF' in which to decompose your variable data using factor analysis (default is to not use this, but instead to perform parallel analysis, which has options below.) If not using an explicit number of factors, parallel analysis is performed to estimate the number of latent factors from the data, with the following options for Horn's test in the R function 'paran()': -P, --Percentile=PERC :percentile value used in estimating bias; 'percentile' in paran(). (Default: conservative value of 99.) -I, --Iter_Horn=N_ITER :number of Monte Carlo iterations in Horn's test; 'iterations' in paran(). (Default: 5000.) -g, --graph_on :switch to turn on saving the paran()-produced graph of Horn's test results. File prefix will be PREFIX string input above; file type can be set with the next option. -i, --image-type=ITYPE :if 'graph_on' is used, then you can choose the output image file type from: 'jpeg', 'pdf', 'png', 'tiff'. (Default: 'jpeg'.) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Example: fat_lat_csv.py -c Subject_data.csv \\ -p Subject_data_LAT \\ -N -g -C -1 or, equivalently, fat_lat_csv.py --csv_in='Subject_data.csv' \\ --prefix='Subject_data_LAT' \\ --NA_warn_off --graph_on \\ --Count_loads=-1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * This program is part of AFNI-FATCAT: Taylor PA, Saad ZS (2013). FATCAT: (An Efficient) Functional And Tractographic Connectivity Analysis Toolbox. Brain Connectivity. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ''' comm_str = 'fat_lat_csv.py ' file_csv = '' file_matr_glob = '' file_prefix = '' file_listmatch = '' SWITCH_NAwarn = 1 SWITCH_ExternLabsOK = 1 # user doesn't choose this here SWITCH_DoGraph = 0 IMG_type = FR.PARN_OUT_types[0] N_FACS = 0 file_listmodel = '' list_model = '' N_LOADS = 0 fact_lab_pref = '' Percentile = 99 N_iter = 5000 try: opts, args = getopt.getopt(argv,"hNgc:m:l:i:n:C:L:P:I:p:v:f:", ["help", "NA_warn_off", "graph_on", "csv_in=", "matr_in=", "list_match=", "image_type=", "num_facs=", "Count_loads=", "Label_factors=", "Percentile=", "Iter_Horn=", "prefix=", "vars=", "file_vars="]) except getopt.GetoptError: print "** Error reading options. Try looking at the helpfile:" print "\t $ fat_mvm_prep.py -h\n" sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print help_line sys.exit() elif opt in ("-N", "--NA_warn_off"): SWITCH_NAwarn = 0 comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-g", "--graph_on"): SWITCH_DoGraph = 1 comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-c", "--csv_in"): file_csv = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-m", "--matr_in"): file_matr_glob = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-p", "--prefix"): file_prefix = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-l", "--list_match"): file_listmatch = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-v", "--vars"): list_model = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-f", "--file_vars"): file_listmodel = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-i", "--image_type"): IMG_type = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-n", "--num_facs"): N_FACS = int(arg) comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-C", "--Count_loads"): N_LOADS = int(arg) comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-L", "--Label_factors"): fact_lab_pref = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-P", "--Percentile"): Percentile = int(arg) comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-I", "--Iter_Horn"): N_iter = int(arg) comm_str = GR.RecapAttach(comm_str, opt, arg) if N_FACS <0 : print "** ERROR: bad number of factors asked for: ",N_FACS sys.exit() if (Percentile <=0) or (Percentile >=100): print "** ERROR: bad percentile asked for; should be (0, 100)." sys.exit() if not( FR.PARN_OUT_types.__contains__(IMG_type) ): print "** Error! ", print "Output file type '-i %s' is not valid. Select from:" % (IMG_type) print "\t", for x in FR.PARN_OUT_types: print " '"+x+"' ", print "\n" sys.exit(32) if ( file_csv == '' ) or ( file_prefix == '' ) : print "** ERROR: missing a necessary input." sys.exit() if ( file_matr_glob == '' ) and ( file_listmatch == '' ): print "*+ No matrices input -> going to use all subjects in calcs." if not( file_matr_glob == '' ) and not( file_listmatch == '' ): print "*+ Warning: both a path for globbing *and* a listfile have", print " been input for the matrix file." print "\tThe glob one after '-m' will be ignored." if not( list_model == '' ) and not( file_listmodel == '' ): print "*+ Warning: both a variable list *and* a variable file have", print " been input (file will be given precedence)." return comm_str, file_csv, file_matr_glob, file_prefix, file_listmatch, \ SWITCH_NAwarn, SWITCH_ExternLabsOK, SWITCH_DoGraph, \ IMG_type, N_FACS, N_LOADS, fact_lab_pref, Percentile, N_iter, \ list_model, file_listmodel
def main(argv): '''Basic reading in of commandline options.''' help_line = '''\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ++ Jan, 2015 (ver 1.2). Written by PA Taylor. ++ Read in a data table file (likely formatted using the program fat_mvm_prep.py) and build an executable command for 3dMVM (written by G Chen) with a user-specified variable model. This should allow for useful repeated measures multivariate modeling of networks of data (such as from 3dNetCorr or 3dTrackID), as well as follow-up analysis of subconnections within the network. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + INPUTS: 1) Group data table text file (formatted as the *_MVMtbl.txt file output by fat_mvm_prep.py); contains subject network info (ROI parameter values) and individual variables. 2) Log file (formatted as the *_MVMprep.log file output by fat_mvm_prep.py) containing, among other things, a list of network ROIs and a list of parameters whose values are stored in the group data table. 3) A list of variables, whose values are also stored in the group data table, which are to be statistically modeled. The list may be provided either directly on the commandline or in a separate text file. Variable entries may now include interactions (using '*') among either a) two categorical variables, or b) one categorical and one quantitative variable. Running with the '*' symbol includes both the main effects and the interactions effects of the variables in the test. That is, A*B = A + B + A:B. Post hoc tests will now be run for both the main effects and the interactions, as well. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + OUTPUTS 1a) A text file (named PREFIX_scri.tcsh) containing a script for running 3dMVM, using the prescribed variables along with each individual parameter. If N parameters are contained in the group data table and M variables selected for the model, then N network-wise ANOVAs for set of M+1 (includes the intercept) effects will be run. Additionally, if there are P ROIs comprising the network, then the generated script file is automatically set to perform PxM "post hoc" tests for the interactions of each ROI and each variable (if the variable is categorical, then there are actually more tests-- using one for each subcategory). This basic script can be run simply from the commandline: $ tcsh PREFIX_scri.tcsh after which ... 1b) ... a text file of the test results is saved in a file called "PREFIX_MVM.txt". Results in the default *MVM.txt file are grouped by variable, first producing a block of ANOVA output with three columns per variable: Chi-square value, degrees of freedom, and p-value. This is followed by a block of post hoc testing output with four columns: test value, t-statistic, degrees of freedom and p-value. See 3dMVM for more information. NB: The '1a' script is a *very basic starter/suggestion* for performing statistical tests. Feel free to modify it as you wish for your particular study. See '3dMVM -help' for more information. The ANOVA tests are performed on a network-wide level, and the posthoc tests followup with the same variables on a per-ROI level. The idea is: if there is a significant parameter-variable association on the network level (seen in the ANOVA results), it may be interesting to see if some particular ROIs are driving the effect (seen in the posthoc results). * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + USAGE: $ fat_mvm_scripter.py --prefix=PREFIX \\ --table=TABLE_FILE --log=LOG_FILE \\ { --vars='VAR1 VAR2 VAR3 ...' | --file_vars=VAR_FILE } \\ { --Pars='PAR1 PAR2 PAR3 ...' | --File_Pars=PAR_FILE } \\ { --rois='ROI1 ROI2 ROI3 ...' | --file_rois=ROI_FILE } \\ { --no_posthoc } { --NA_warn_off } -p, --prefix=PREFIX :output prefix for script file, which will then be called PREFIX_scri.tcsh, for ultimately creating a PREFIX_MVM.txt file of statistical results from 3dMVM. -t, --table=TABLE_FILE :text file containing columns of subject data, one subject per row, formatted as a *_MVMtbl.txt output by fat_mvm_prep.py (see that program's help for more description. -l, --log=LOG_FILE :file formatted according to fat_mvm_prep.py containing commented headings and also lists of cross-group ROIs and parameters. for which there were network matrices (potentially among other useful bits of information). See output of fat_mvm_prep.py for more info; NB: commented headings generally contain selection keywords, so pay attention to those if generating your own. -v, --vars='X Y Z ...' :one method for supplying a list of variables for the 3dMVM model. Names must be separated with whitespace. Categorical variables will be detected automatically *or* by the presence of nonnumeric characters in their columns; quantitative variables will be automatically put into a list for post hoc tests. -f, --file_vars=VAR_FILE :the second method for supplying a list of variables for 3dMVM. VAR_FILE is a text file with a single column of variable names. Using the VAR_FILE, you can specify subsets of categorical variables for GLT testing. The categories to be tested are entered on the same line as the variable, separated only by spaces. If specifying a subset for an inter- action, then put a space-separated comma between the lists of variables, if necessary (and if specifying categories only for the second of two categorical variables, then put a space-separated comma before the list). ----> ... using either variable entry format, an interaction can be specified using '*', where A*B = A + B + A:B. -P, --Pars='T S R ...' :one method for supplying a list of parameters (that is, the names of matrices) to run in distinct 3dMVM models. Names must be *or* separated with whitespace. Might be useful to get a smaller jungle of output results in cases where there are many matrices in a file, but only a few that are really cared about. -F, --File_Pars=PAR_FILE :the second method for supplying a list of parameters for 3dMVM runs. PAR_FILE is a text file with a single column of variable names. -r, --rois='A B C ...' :optional command to be able to select a subset of available network ROIs, if that's useful for some reason (NB: fat_mvm_prep.py should have already found *or* a set of ROIs with data across all the the subjects in the group, listed in the *MVMprep.log file; default would be using the entire list of ROIs in this log file as the network of ROIs). -R, --file_rois=ROI_FILE :the second method for supplying a (sub)list of ROIs for 3dMVM runs. ROI_FILE is a text file with a single column of variable names (see '--rois' for the default network selection). -s, --subnet_pref=SUBPR :if a subnetwork list of ROIs is used (see preceding two options), then one can give a name SUBPR for the new table file that is created. Otherwise, a default name from the required '--prefix=PREFIX' (or '-p PREFIX') option is used: PREFIX_SUBNET_MVMtbl.txt. -n, --no_posthoc :switch to turn off the automatic generation of per-ROI post hoc tests (default is to do them all). -N, --NA_warn_off :switch to turn off the automatic warnings as the data table is created. 3dMVM will excise subjects with NA values, so there shouldn't be NA values in columns you want to model. However, you might have NAs elsewhere in the data table that might be annoying to have flagged, so perhaps turning off warnings would then be useful. (Default is to warn.) -c, --cat_pair_off :switch to turn off the following test: by default, if a categorical variable undergoes posthoc testing, a GLT will be created for every pairwise combination of its categories, testing whether the given parameter is higher in one group than another (each category is assigned a +1 or -1, which is recorded in parentheses in the output label names). * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Example: $ fat_mvm_scripter.py --file_vars=VARLIST.txt \\ --log_file=study_MVMprep.log \\ --table=study_MVMtbl.txt \\ --prefix=study or, equivalently: $ fat_mvm_scripter.py -f VARLIST.txt -l study_MVMprep.log -t study_MVMtbl.txt -p study * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * This program is part of AFNI-FATCAT: Taylor PA, Saad ZS (2013). FATCAT: (An Efficient) Functional And Tractographic Connectivity Analysis Toolbox. Brain Connectivity. For citing the statistical approach, please use the following: Chen, G., Adleman, N.E., Saad, Z.S., Leibenluft, E., Cox, R.W. (2014). Applications of Multivariate Modeling to Neuroimaging Group Analysis: A Comprehensive Alternative to Univariate General Linear Model. NeuroImage 99:571-588. https://afni.nimh.nih.gov/pub/dist/HBM2014/Chen_in_press.pdf The first application of this network-based statistical approach is given in the following: Taylor PA, Jacobson SW, van der Kouwe AJW, Molteno C, Chen G, Wintermark P, Alhamud A, Jacobson JL, Meintjes EM (2014). A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. (HBM, in press) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ''' file_prefix = '' list_model = '' userlist_roi = '' pref_subnet = '' # Sep,2015: make MVM table for user's ROI susbset list_pars = '' file_listpars = '' file_listrois = '' file_listmodel = '' file_table = '' file_log = '' SWITCH_posthoc = 1 SWITCH_NAwarn = 1 SWITCH_subnet = 0 # Sep,2015: for subnet minitable comm_str = '' CAT_PAIR_COMP = 1 # for categ var, now do rel compar by default # allow status 0 on -help 24 Sep 2018 [rickr] if "-help" in argv: print help_line sys.exit() try: opts, args = getopt.getopt(argv,"hnNcv:f:p:t:l:r:R:F:P:s:", ["help", "no_posthoc", "NA_warn_off", "cat_pair_off", "vars=", "file_vars=", "prefix=", "table=", "log_file=", "rois=", "file_rois=", "File_Pars=", "Pars=", "subnet_pref=" ]) except getopt.GetoptError: print "** Error reading options. Try looking at the helpfile:" print "\t $ fat_mvm_scripter.py -h\n" sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print help_line sys.exit() elif opt in ("-r", "--rois"): userlist_roi = arg comm_str = GR.RecapAttach(comm_str, opt, arg) SWITCH_subnet = 1 elif opt in ("-R", "--file_rois"): file_listrois = arg comm_str = GR.RecapAttach(comm_str, opt, arg) SWITCH_subnet = 1 elif opt in ("-s", "--subnet_pref"): pref_subnet = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-P", "--Pars"): list_pars = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-F", "--File_Pars"): file_listpars = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-v", "--vars"): list_model = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-f", "--file_vars"): file_listmodel = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-p", "--prefix"): file_prefix = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-t", "--table"): file_table = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-l", "--log_file"): file_log = arg comm_str = GR.RecapAttach(comm_str, opt, arg) elif opt in ("-n", "--no_posthoc"): SWITCH_posthoc = 0 comm_str = GR.RecapAttach(comm_str, opt, '') elif opt in ("-N", "--NA_warn_off"): SWITCH_NAwarn = 0 comm_str = GR.RecapAttach(comm_str, opt, '') elif opt in ("-c", "--cat_pair_off"): CAT_PAIR_COMP = 0 comm_str = GR.RecapAttach(comm_str, opt, '') if not(file_prefix): print "** ERROR: missing an output prefix." print "\t Need to use either '-p' or '--prefix'." sys.exit() if not(file_table): print "** ERROR: missing an input table." print "\t Need to use either '-t' or '--table'." sys.exit() if not(file_log): print "** ERROR: missing an input log file." print "\t Need to use either '-l' or '--log'." sys.exit() if ( list_model == '' ) and ( file_listmodel == '' ): print "** ERROR: missing a necessary model description input." print "\t Need to use either '-m' or '-f'." sys.exit() if not( list_model == '' ) and not( file_listmodel == '' ): print "*+ Warning: both a model list *and* a model file have", print " been input." print "\tThe latter will be used." if not( list_pars == '' ) and not( file_listpars == '' ): print "*+ Warning: both a parameter list *and* a parameter file have", print " been input." print "\tThe latter will be used." if not( userlist_roi == '' ) and not( file_listrois == '' ): print "*+ Warning: both a ROI list *and* a ROI file have", print " been input." print "\tThe latter will be used." if SWITCH_subnet: # in case no prefix is given if not(pref_subnet) : pref_subnet = file_table.strip(GR.MVM_file_postfix) pref_subnet+= '_SUBNET'+GR.MVM_file_postfix return \ list_model, file_listmodel, file_prefix, file_table, \ file_log, userlist_roi, file_listrois, pref_subnet, list_pars, \ file_listpars, SWITCH_posthoc, comm_str, SWITCH_NAwarn, CAT_PAIR_COMP