コード例 #1
0
def main():
    # set the path to pre-trained model and output
    pre_trained_net = './pre_trained/' + args.net_type + '_' + args.dataset + '.pth'
    args.outf = args.outf + args.net_type + '_' + args.dataset + '/'
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)
    # check the in-distribution dataset
    if args.dataset == 'cifar100':
        args.num_classes = 100

    # load networks
    if args.net_type == 'densenet':
        if args.dataset == 'svhn':
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.gpu)))
        else:
            model = torch.load(pre_trained_net,
                               map_location="cuda:" + str(args.gpu))
            for i, (name, module) in enumerate(model._modules.items()):
                module = recursion_change_bn(model)
            for m in model.modules():
                if 'Conv' in str(type(m)):
                    setattr(m, 'padding_mode', 'zeros')
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((125.3 / 255, 123.0 / 255, 113.9 / 255),
                                 (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0)),
        ])
    elif args.net_type == 'resnet':
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
    model.cuda()
    print('load model: ' + args.net_type)

    # load dataset
    print('load target data: ', args.dataset)
    train_loader, _ = data_loader.getTargetDataSet(args.dataset,
                                                   args.batch_size,
                                                   in_transform, args.dataroot)
    test_clean_data = torch.load(args.outf + 'clean_data_%s_%s_%s.pth' %
                                 (args.net_type, args.dataset, 'FGSM'))
    test_adv_data = torch.load(args.outf + 'adv_data_%s_%s_%s.pth' %
                               (args.net_type, args.dataset, 'FGSM'))
    test_noisy_data = torch.load(args.outf + 'noisy_data_%s_%s_%s.pth' %
                                 (args.net_type, args.dataset, 'FGSM'))
    test_label = torch.load(args.outf + 'label_%s_%s_%s.pth' %
                            (args.net_type, args.dataset, 'FGSM'))

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 32, 32).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    print('get sample mean and covariance')
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader)

    print('get Mahalanobis scores')
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print('\nNoise: ' + str(magnitude))
        for i in range(num_output):
            M_in \
            = lib_generation.get_Mahalanobis_score_adv(model, test_clean_data, test_label, \
                                                       args.num_classes, args.outf, args.net_type, \
                                                       sample_mean, precision, i, magnitude)
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for i in range(num_output):
            M_out \
            = lib_generation.get_Mahalanobis_score_adv(model, test_adv_data, test_label, \
                                                       args.num_classes, args.outf, args.net_type, \
                                                       sample_mean, precision, i, magnitude)
            M_out = np.asarray(M_out, dtype=np.float32)
            if i == 0:
                Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
            else:
                Mahalanobis_out = np.concatenate(
                    (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                    axis=1)

        for i in range(num_output):
            M_noisy \
            = lib_generation.get_Mahalanobis_score_adv(model, test_noisy_data, test_label, \
                                                       args.num_classes, args.outf, args.net_type, \
                                                       sample_mean, precision, i, magnitude)
            M_noisy = np.asarray(M_noisy, dtype=np.float32)
            if i == 0:
                Mahalanobis_noisy = M_noisy.reshape((M_noisy.shape[0], -1))
            else:
                Mahalanobis_noisy = np.concatenate(
                    (Mahalanobis_noisy, M_noisy.reshape(
                        (M_noisy.shape[0], -1))),
                    axis=1)
        Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
        Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
        Mahalanobis_noisy = np.asarray(Mahalanobis_noisy, dtype=np.float32)
        Mahalanobis_pos = np.concatenate((Mahalanobis_in, Mahalanobis_noisy))

        Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
            Mahalanobis_out, Mahalanobis_pos)
        file_name = os.path.join(
            args.outf, 'Mahalanobis_%s_%s_%s.npy' %
            (str(magnitude), args.dataset, 'FGSM'))

        Mahalanobis_data = np.concatenate(
            (Mahalanobis_data, Mahalanobis_labels), axis=1)
        np.save(file_name, Mahalanobis_data)
コード例 #2
0
def main():
    # set the path to pre-trained model and output
    pre_trained_net = './pre_trained/' + args.net_type + '_' + args.dataset + '.pth'
    args.outf = args.outf + args.net_type + '_' + args.dataset + '/'
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)
    # check the in-distribution dataset
    if args.dataset == 'cifar100':
        args.num_classes = 100
    if args.dataset == 'svhn':
        out_dist_list = ['cifar10', 'imagenet_resize', 'lsun_resize']
    else:
        out_dist_list = ['svhn', 'imagenet_resize', 'lsun_resize']

    # load networks
    if args.net_type == 'densenet':
        if args.dataset == 'svhn':
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.gpu)))
        else:
            model = torch.load(pre_trained_net,
                               map_location="cuda:" + str(args.gpu))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((125.3 / 255, 123.0 / 255, 113.9 / 255),
                                 (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0)),
        ])
    elif args.net_type == 'resnet':
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
    model.cuda()
    print('load model: ' + args.net_type)

    # load dataset
    print('load target data: ', args.dataset)
    train_loader, test_loader = data_loader.getTargetDataSet(
        args.dataset, args.batch_size, in_transform, args.dataroot)

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 32, 32).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1


################################ edits
    print("Calculate SVD before getting sample mean and variance")
    # svd_result= lib_generation.get_pca(model, args.num_classes, feature_list, train_loader)
    # lib_generation.get_pca_incremental(model, args.num_classes, feature_list, train_loader,args)
    svd_result = None
    print('get sample mean and covariance')
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader, svd_result, args)
    ################################ edits_end_sample_generator
    print('get Mahalanobis scores')
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print('Noise: ' + str(magnitude))
        for i in range(num_output):
            M_in = lib_generation.get_Mahalanobis_score(model, test_loader, args.num_classes, args.outf, \
                                                        True, args.net_type, sample_mean, precision, i, magnitude,svd_result,args)
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for out_dist in out_dist_list:
            out_test_loader = data_loader.getNonTargetDataSet(
                out_dist, args.batch_size, in_transform, args.dataroot)
            print('Out-distribution: ' + out_dist)
            for i in range(num_output):
                M_out = lib_generation.get_Mahalanobis_score(model, out_test_loader, args.num_classes, args.outf, \
                                                             False, args.net_type, sample_mean, precision, i, magnitude,svd_result,args)
                M_out = np.asarray(M_out, dtype=np.float32)
                if i == 0:
                    Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
                else:
                    Mahalanobis_out = np.concatenate(
                        (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                        axis=1)

            Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
            Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
            Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
                Mahalanobis_out, Mahalanobis_in)
            file_name = os.path.join(
                args.outf, 'Mahalanobis_%s_%s_%s.npy' %
                (str(magnitude), args.dataset, out_dist))
            Mahalanobis_data = np.concatenate(
                (Mahalanobis_data, Mahalanobis_labels), axis=1)
            np.save(file_name, Mahalanobis_data)
コード例 #3
0
def main():
    # set the path to pre-trained model and output
    pre_trained_net = './pre_trained/' + args.net_type + '_' + args.dataset + '.pth'
    args.outf = args.outf + args.net_type + '_' + args.dataset + '/'
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)
    # check the in-distribution dataset
    if args.dataset == 'malaria':
        args.num_classes = 2
    if args.dataset == 'cifar100':
        args.num_classes = 100

    # load networks
    if args.net_type == 'densenet':
        if args.dataset == 'svhn':
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.gpu)))
        else:
            model = torch.load(pre_trained_net,
                               map_location="cuda:" + str(args.gpu))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((125.3 / 255, 123.0 / 255, 113.9 / 255),
                                 (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0)),
        ])
    elif args.net_type == 'resnet':
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
    elif args.net_type == 'resnet18':
        model = models.get_model(args.net_type)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
    model.cuda()
    print('load model: ' + args.net_type)

    # load dataset
    # selected_list = torch.LongTensor(selected_list)
    # test_clean_data = torch.index_select(test_clean_data, 0, selected_list)
    # test_adv_data = torch.index_select(test_adv_data, 0, selected_list)
    # test_noisy_data = torch.index_select(test_noisy_data, 0, selected_list)
    # test_label = torch.index_select(test_label, 0, selected_list)

    save_path = '%s/%s_%s/' % (args.outf, args.net_type, args.dataset)
    os.makedirs(save_path, exist_ok=True)
    # torch.save(test_clean_data, '%s/clean_data_%s_%s_%s.pth' % (save_path, args.model, args.dataset, attack))
    # torch.save(test_adv_data, '%s/adv_data_%s_%s_%s.pth' % (save_path, args.model, args.dataset, attack))
    # torch.save(test_noisy_data, '%s/noisy_data_%s_%s_%s.pth' % (save_path, args.model, args.dataset, attack))
    # torch.save(test_label, '%s/label_%s_%s_%s.pth' % (save_path, args.model, args.dataset, attack))

    print('load target data: ', args.dataset)
    train_loader, _ = data_loader.getTargetDataSet(args.dataset,
                                                   args.batch_size, None,
                                                   args.dataroot)
    test_clean_data = torch.load(args.outf + 'clean_data_%s_%s_%s.pth' %
                                 (args.net_type, args.dataset, args.adv_type))
    test_adv_data = torch.load(args.outf + 'adv_data_%s_%s_%s.pth' %
                               (args.net_type, args.dataset, args.adv_type))
    test_noisy_data = torch.load(args.outf + 'noisy_data_%s_%s_%s.pth' %
                                 (args.net_type, args.dataset, args.adv_type))
    test_label = torch.load(args.outf + 'label_%s_%s_%s.pth' %
                            (args.net_type, args.dataset, args.adv_type))

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 32, 32).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1
    print('get sample mean and covariance')
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader)
    print('get LID scores')
    LID, LID_adv, LID_noisy \
    = lib_generation.get_LID(model, test_clean_data, test_adv_data, test_noisy_data, test_label, num_output)
    overlap_list = [10, 20, 30, 40, 50, 60, 70, 80, 90]
    list_counter = 0
    for overlap in overlap_list:
        Save_LID = np.asarray(LID[list_counter], dtype=np.float32)
        Save_LID_adv = np.asarray(LID_adv[list_counter], dtype=np.float32)
        Save_LID_noisy = np.asarray(LID_noisy[list_counter], dtype=np.float32)
        Save_LID_pos = np.concatenate((Save_LID, Save_LID_noisy))
        LID_data, LID_labels = lib_generation.merge_and_generate_labels(
            Save_LID_adv, Save_LID_pos)
        file_name = os.path.join(
            args.outf,
            'LID_%s_%s_%s.npy' % (overlap, args.dataset, args.adv_type))
        LID_data = np.concatenate((LID_data, LID_labels), axis=1)
        np.save(file_name, LID_data)
        list_counter += 1

    print('get Mahalanobis scores')
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print('\nNoise: ' + str(magnitude))
        for i in range(num_output):
            M_in \
            = lib_generation.get_Mahalanobis_score_adv(model, test_clean_data, test_label, \
                                                       args.num_classes, args.outf, args.net_type, \
                                                       sample_mean, precision, i, magnitude)
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for i in range(num_output):
            M_out \
            = lib_generation.get_Mahalanobis_score_adv(model, test_adv_data, test_label, \
                                                       args.num_classes, args.outf, args.net_type, \
                                                       sample_mean, precision, i, magnitude)
            M_out = np.asarray(M_out, dtype=np.float32)
            if i == 0:
                Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
            else:
                Mahalanobis_out = np.concatenate(
                    (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                    axis=1)

        for i in range(num_output):
            M_noisy \
            = lib_generation.get_Mahalanobis_score_adv(model, test_noisy_data, test_label, \
                                                       args.num_classes, args.outf, args.net_type, \
                                                       sample_mean, precision, i, magnitude)
            M_noisy = np.asarray(M_noisy, dtype=np.float32)
            if i == 0:
                Mahalanobis_noisy = M_noisy.reshape((M_noisy.shape[0], -1))
            else:
                Mahalanobis_noisy = np.concatenate(
                    (Mahalanobis_noisy, M_noisy.reshape(
                        (M_noisy.shape[0], -1))),
                    axis=1)
        Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
        Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
        Mahalanobis_noisy = np.asarray(Mahalanobis_noisy, dtype=np.float32)
        Mahalanobis_pos = np.concatenate((Mahalanobis_in, Mahalanobis_noisy))

        Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
            Mahalanobis_out, Mahalanobis_pos)
        file_name = os.path.join(
            args.outf, 'Mahalanobis_%s_%s_%s.npy' %
            (str(magnitude), args.dataset, args.adv_type))

        Mahalanobis_data = np.concatenate(
            (Mahalanobis_data, Mahalanobis_labels), axis=1)
        np.save(file_name, Mahalanobis_data)
コード例 #4
0
def main():
    # set the path to pre-trained model and output
    pre_trained_net = "./pre_trained/" + args.net_type + "_" + args.dataset + ".pth"
    args.outf = args.outf + args.net_type + "_" + args.dataset + "/"
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)
    # check the in-distribution dataset
    if args.dataset == "cifar100":
        args.num_classes = 100
    if args.dataset == "svhn":
        out_dist_list = ["cifar10", "imagenet_resize", "lsun_resize"]
    else:
        out_dist_list = ["svhn", "imagenet_resize", "lsun_resize"]

    # load networks
    if args.net_type == "densenet":
        if args.dataset == "svhn":
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.gpu)))
        else:
            model = torch.load(pre_trained_net,
                               map_location="cuda:" + str(args.gpu))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(
                (125.3 / 255, 123.0 / 255, 113.9 / 255),
                (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0),
            ),
        ])
    elif args.net_type == "resnet":
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
    model.cuda()
    print("load model: " + args.net_type)

    # load dataset
    print("load target data: ", args.dataset)
    train_loader, test_loader = data_loader.getTargetDataSet(
        args.dataset, args.batch_size, in_transform, args.dataroot)

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 32, 32).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    print("get sample mean and covariance")
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader)

    print("get Mahalanobis scores")
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print("Noise: " + str(magnitude))
        for i in range(num_output):
            M_in = lib_generation.get_Mahalanobis_score(
                model,
                test_loader,
                args.num_classes,
                args.outf,
                True,
                args.net_type,
                sample_mean,
                precision,
                i,
                magnitude,
            )
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for out_dist in out_dist_list:
            out_test_loader = data_loader.getNonTargetDataSet(
                out_dist, args.batch_size, in_transform, args.dataroot)
            print("Out-distribution: " + out_dist)
            for i in range(num_output):
                M_out = lib_generation.get_Mahalanobis_score(
                    model,
                    out_test_loader,
                    args.num_classes,
                    args.outf,
                    False,
                    args.net_type,
                    sample_mean,
                    precision,
                    i,
                    magnitude,
                )
                M_out = np.asarray(M_out, dtype=np.float32)
                if i == 0:
                    Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
                else:
                    Mahalanobis_out = np.concatenate(
                        (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                        axis=1)

            Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
            Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
            (
                Mahalanobis_data,
                Mahalanobis_labels,
            ) = lib_generation.merge_and_generate_labels(
                Mahalanobis_out, Mahalanobis_in)
            file_name = os.path.join(
                args.outf,
                "Mahalanobis_%s_%s_%s.npy" %
                (str(magnitude), args.dataset, out_dist),
            )
            Mahalanobis_data = np.concatenate(
                (Mahalanobis_data, Mahalanobis_labels), axis=1)
            np.save(file_name, Mahalanobis_data)
コード例 #5
0
def main():

    if args.dataset == 'svhn':
        out_dist_list = ['cifar10', 'imagenet_resize', 'lsun_resize']
    else:
        out_dist_list = ['svhn', 'imagenet_resize', 'lsun_resize']

    outf = os.path.join(args.outf,
                        args.net_type + '_' + args.dataset + 'RealNVP')
    if os.path.isdir(outf) == False:
        os.mkdir(outf)
    # torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.cuda_index)

    if args.dataset == 'cifar100':
        args.num_classes = 100
    else:
        args.num_classes = 10

    with open(
            os.path.join(
                'feature_lists',
                'feature_lists_{}_imagenet_resize_{}_Wlinear.pickle'.format(
                    args.net_type, args.dataset)), 'rb') as f:
        [
            sample_class_mean, list_features, list_features_test,
            list_features_out, A, A_inv, log_abs_det_A_inv
        ] = pickle.load(f)

    num_validation = 10000
    v_size_per_class = int(num_validation / args.num_classes)
    X = []
    X_validation = []

    for i in range(args.num_classes):
        X_validation.append(
            list_features[args.layer][i][:v_size_per_class, :] -
            sample_class_mean[args.layer][i])
        X.append(list_features[args.layer][i][v_size_per_class:, :] -
                 sample_class_mean[args.layer][i])

    train_loader_X = []
    validation_loader_X = []
    X_all = 0
    for i in range(args.num_classes):
        if i == 0:
            X_all = X[i]
        else:
            X_all = torch.cat((X_all, X[i]), 0)

    for i in range(args.num_classes):
        train_loader_X.append(
            torch.utils.data.DataLoader(X[i],
                                        batch_size=args.batch_size,
                                        shuffle=True))
        validation_loader_X.append(
            torch.utils.data.DataLoader(X_validation[i],
                                        batch_size=args.batch_size,
                                        shuffle=True))

    num_features = A_inv[args.layer].shape[0]
    num_train = X_all.size(0)

    in_features_validation_test = list_features_test[args.layer]
    in_features_validation = in_features_validation_test[:2000, :]

    out_features_validation_test = list_features_out[args.layer]
    out_features_validation = out_features_validation_test[:2000, :]

    features_validation = torch.cat(
        (in_features_validation, out_features_validation), dim=0)
    label_validation = torch.cat(
        (torch.cuda.FloatTensor(in_features_validation.size(0)).fill_(1),
         torch.cuda.FloatTensor(out_features_validation.size(0)).fill_(0)))

    half_features = int(num_features / 2)
    zeros = np.zeros(half_features)
    ones = np.ones(half_features)
    right = np.concatenate((zeros, ones), axis=None)
    left = np.concatenate((ones, zeros), axis=None)

    masks = torch.from_numpy(
        np.array(
            [right, left, right, left, right, left, right, left, right,
             left]).astype(np.float32)).cuda()
    flow = []
    optimizer = []

    A_layer = torch.tensor(A[args.layer])
    A_inv_layer = torch.tensor(A_inv[args.layer])
    log_abs_det_A_inv_layer = torch.tensor(log_abs_det_A_inv[args.layer])
    t_start = 0
    for i in range(args.num_classes):
        flow.append(
            RealNVP(masks, num_features, args.length_hidden, A_layer,
                    A_inv_layer, log_abs_det_A_inv_layer))

        optimizer.append(
            torch.optim.Adam(
                [p for p in flow[i].parameters() if p.requires_grad == True],
                lr=args.lr))

    sample_class_mean_layer = sample_class_mean[args.layer]

    loss_vec, auroc_vec, validation_vec = train(train_loader_X, flow, optimizer, args.num_iter, num_train, outf, args.layer, \
                                                args.length_hidden, validation_loader_X, num_validation, features_validation, label_validation, sample_class_mean_layer,\
                                                args.num_classes, args.dataset, t_start)

    features_test = list_features_test[args.layer]

    test_loader = torch.utils.data.DataLoader(features_test,
                                              batch_size=args.batch_size,
                                              shuffle=False)
    score_in = test(test_loader, flow, sample_class_mean_layer,
                    args.num_classes)

    for out_dist in out_dist_list:

        with open(
                'feature_lists/feature_lists_{}_{}_{}_Wlinear.pickle'.format(
                    args.net_type, out_dist, args.dataset), 'rb') as f:
            [_, _, list_features_test, list_features_out, _, _,
             _] = pickle.load(f)

        if out_dist == 'FGSM':
            features_test = list_features_test[args.layer]

            test_loader = torch.utils.data.DataLoader(
                features_test, batch_size=args.batch_size, shuffle=False)
            score_in = test(test_loader, flow, sample_class_mean_layer,
                            args.num_classes)

        features_out = list_features_out[args.layer]

        out_loader = torch.utils.data.DataLoader(features_out,
                                                 batch_size=args.batch_size,
                                                 shuffle=False)
        score_out = test(out_loader, flow, sample_class_mean_layer,
                         args.num_classes)

        pram = {
            'out_dist': out_dist,
            'Network_type': args.net_type,
            'Layer': args.layer,
            'Batch_size': args.batch_size,
            'num_iter': args.num_iter,
            'cuda_index': args.cuda_index,
            'lr': args.lr,
            'lr_schedule': {
                1: args.lr
            },
            'length_hidden': args.length_hidden,
            'dropout': False,
            'weight_decay': 0,
            'init_zeros': True,
            'num_flows': int(len(flow[0].t)),
        }

        with open(
                os.path.join(
                    outf,
                    'Residual_flow_%s_%s_layer_%s_%siter_%sflows_%slength_hidden.txt'
                    % (args.dataset, args.layer, args.num_iter,
                       int(len(flow[0].t)), args.length_hidden)), 'w') as file:
            file.write('date: %s\n' % (datetime.datetime.now()))
            file.write(json.dumps(pram))

        score_in = np.asarray(score_in, dtype=np.float32)
        score_out = np.asarray(score_out, dtype=np.float32)
        score_data, score_labels = lib_generation.merge_and_generate_labels(
            score_out, score_in)
        file_name = os.path.join(
            outf,
            'Residual_flow_%s_%s_layer_%s_%siter_%sflows_%slength_hidden' %
            (args.dataset, out_dist, args.layer, args.num_iter,
             int(len(flow[0].t)), args.length_hidden))
        score_data = np.concatenate((score_data, score_labels), axis=1)
        np.savez(file_name, score_data, loss_vec, pram, auroc_vec,
                 validation_vec)

    std_Z_max = 0
    std_Z_min = 1
    for i in range(args.num_classes):
        std_Z = flow[i].f(X[i], training=False)[0].std(0)
        std_Z_max = max(std_Z_max, std_Z.max())
        std_Z_min = min(std_Z_min, std_Z.min())

    print('std z: \n', std_Z)
    print('std z max: \n', std_Z_max)
    print('std z min: \n', std_Z_min)
コード例 #6
0
def extract_features(pre_trained_net, in_distribution, in_dist_name,
                     out_dist_list, out_of_distribution, in_transform, gpu,
                     batch_size, num_classes):
    # set the path to pre-trained model and output
    outf = "/output/"
    outf = outf + "model" + '_' + in_dist_name + '/'
    if os.path.isdir(outf) == False:
        os.mkdir(outf)

    torch.cuda.manual_seed(0)
    torch.cuda.set_device(gpu)

    # load networks
    model = torch.load(pre_trained_net, map_location="cuda:" + str(gpu))

    model.cuda()
    print('loaded model')

    # load target dataset
    validation_split = .2
    shuffle_dataset = True
    random_seed = 42

    # Creating data indices for training and validation splits:
    dataset_size = len(in_distribution)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_split * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    if in_transform is not None:
        train_loader = torch.utils.data.DataLoader(in_distribution,
                                                   batch_size=batch_size,
                                                   shuffle=True,
                                                   sampler=train_sampler,
                                                   **kwargs)
        test_loader = torch.utils.data.DataLoader(in_distribution,
                                                  batch_size=batch_size,
                                                  shuffle=True,
                                                  sampler=valid_sampler,
                                                  **kwargs)
    else:
        train_loader = torch.utils.data.DataLoader(in_distribution,
                                                   batch_size=batch_size,
                                                   shuffle=True,
                                                   sampler=train_sampler,
                                                   **kwargs)
        test_loader = torch.utils.data.DataLoader(in_distribution,
                                                  batch_size=batch_size,
                                                  shuffle=True,
                                                  sampler=valid_sampler,
                                                  **kwargs)

    print('loaded target data: ', in_dist_name)

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(*(list(next(iter(train_loader))[0].size()))).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    print('get sample mean and covariance')
    sample_mean, precision = lib_generation.sample_estimator(
        model, num_classes, feature_list, train_loader, model_name="model")

    print('Generate dataloaders...')

    out_test_loaders = []
    for out_dist in out_of_distribution:
        out_test_loaders.append(
            torch.utils.data.DataLoader(out_dist,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        **kwargs))

    print('get Mahalanobis scores', num_output)
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print('Noise: ' + str(magnitude))
        for i in range(num_output):
            print('layer_num', i)
            M_in = lib_generation.get_Mahalanobis_score(model, test_loader, num_classes, outf, \
                                                        True, "model", sample_mean, precision, i, magnitude)
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for out_test_loader, out_dist in zip(out_test_loaders, out_dist_list):
            print('Out-distribution: ' + out_dist)
            for i in range(num_output):
                M_out = lib_generation.get_Mahalanobis_score(model, out_test_loader, num_classes, outf, \
                                                             False, "model", sample_mean, precision, i, magnitude)
                M_out = np.asarray(M_out, dtype=np.float32)
                if i == 0:
                    Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
                else:
                    Mahalanobis_out = np.concatenate(
                        (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                        axis=1)

            Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
            Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
            Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
                Mahalanobis_out, Mahalanobis_in)
            file_name = os.path.join(
                outf, 'Mahalanobis_%s_%s_%s.npy' %
                (str(magnitude), in_dist_name, out_dist))
            Mahalanobis_data = np.concatenate(
                (Mahalanobis_data, Mahalanobis_labels), axis=1)
            np.save(file_name, Mahalanobis_data)
コード例 #7
0
def main():

    if args.validation_src == 'FGSM':
        if args.dataset == 'svhn':
            out_dist_list = [
                'cifar10', 'imagenet_resize', 'lsun_resize', 'FGSM'
            ]
        else:
            out_dist_list = ['svhn', 'imagenet_resize', 'lsun_resize', 'FGSM']
    else:
        if args.dataset == 'svhn':
            out_dist_list = ['cifar10', 'imagenet_resize', 'lsun_resize']
        else:
            out_dist_list = ['svhn', 'imagenet_resize', 'lsun_resize']

    outf_load = os.path.join(args.outf,
                             args.net_type + '_' + args.dataset + 'RealNVP')
    outf = os.path.join(
        args.outf, args.net_type + '_' + args.dataset + 'RealNVP_magnitude')
    if os.path.isdir(outf) == False:
        os.mkdir(outf)

    # torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.cuda_index)

    if args.dataset == 'cifar100':
        args.num_classes = 100
    else:
        args.num_classes = 10

    with open(
            'feature_lists/feature_lists_{}_imagenet_resize_{}_Wlinear.pickle'.
            format(args.net_type, args.dataset), 'rb') as f:
        [
            sample_class_mean, list_features, list_features_test,
            list_features_out, A, A_inv, log_abs_det_A_inv
        ] = pickle.load(f)

    pre_trained_net = args.net_type + '_' + args.dataset + '.pth'
    pre_trained_net = os.path.join('pre_trained', pre_trained_net)
    if args.net_type == 'densenet':

        if args.dataset == 'svhn':
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.cuda_index)))
        else:
            model = torch.load(pre_trained_net, map_location="cpu")
            for i, (name, module) in enumerate(model._modules.items()):
                module = recursion_change_bn(model)
            for m in model.modules():
                if 'Conv' in str(type(m)):
                    setattr(m, 'padding_mode', 'zeros')
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((125.3 / 255, 123.0 / 255, 113.9 / 255),
                                 (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0)),
        ])
    else:
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net,
                       map_location="cuda:" + str(args.cuda_index)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])

    print('load model: ' + args.net_type)
    model.to(device)
    model.eval()

    # load dataset
    print('load in-data: ', args.dataset)

    num_layers = len(sample_class_mean)

    for layer in range(num_layers):

        num_features = A_inv[layer].shape[0]
        half_features = int(num_features / 2)
        zeros = np.zeros(half_features)
        ones = np.ones(half_features)
        right = np.concatenate((zeros, ones), axis=None)
        left = np.concatenate((ones, zeros), axis=None)

        masks = torch.from_numpy(
            np.array([
                right, left, right, left, right, left, right, left, right, left
            ]).astype(np.float32)).cuda()
        flow = []

        # We reduce the number of neurons in the hidden layers due to GPU memory limitations (11 GB in GTX 2080Ti) - comment out this line for larger GPU memory
        length_hidden = reture_length_hidden(layer)

        A_layer = torch.tensor(A[layer])
        A_inv_layer = torch.tensor(A_inv[layer])
        log_abs_det_A_inv_layer = torch.tensor(log_abs_det_A_inv[layer])

        for i in range(args.num_classes):
            MODEL_FLOW = os.path.join(
                outf_load,
                'model_{}_layer_{}_residual_flow_{}length_hidden'.format(
                    args.dataset, layer, length_hidden), 'flow_{}'.format(i))
            flow.append(
                RealNVP(masks, num_features, length_hidden, A_layer,
                        A_inv_layer, log_abs_det_A_inv_layer))
            flow[i].load_state_dict(torch.load(MODEL_FLOW,
                                               map_location="cuda:{}".format(
                                                   args.cuda_index)),
                                    strict=False)
            flow[i].to(device)
            flow[i].eval()

        sample_class_mean_layer = sample_class_mean[layer]

        m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]

        for magnitude in m_list:

            print('Noise: ' + str(magnitude))
            _, test_loader = data_loader.getTargetDataSet(
                args.dataset, args.batch_size, in_transform, args.dataroot)
            score_in = lib_generation.get_resflow_score(
                test_loader, model, layer, args.num_classes, args.net_type,
                sample_class_mean_layer, flow, magnitude)

            for out_dist in out_dist_list:
                print('load out-data: ', out_dist)

                if out_dist == 'FGSM':
                    test_loader, out_loader = data_loader.getFGSM(
                        args.batch_size, args.dataset, args.net_type)
                    score_in = lib_generation.get_resflow_score_FGSM(
                        test_loader, model, layer, args.num_classes,
                        args.net_type, sample_class_mean_layer, flow,
                        magnitude)
                    score_out = lib_generation.get_resflow_score_FGSM(
                        out_loader, model, layer, args.num_classes,
                        args.net_type, sample_class_mean_layer, flow,
                        magnitude)

                else:
                    out_loader = data_loader.getNonTargetDataSet(
                        out_dist, args.batch_size, in_transform, args.dataroot)
                    score_out = lib_generation.get_resflow_score(
                        out_loader, model, layer, args.num_classes,
                        args.net_type, sample_class_mean_layer, flow,
                        magnitude)

                pram = {
                    'out_dist': out_dist,
                    'Network_type': args.net_type,
                    'Layer': layer,
                    'Batch_size': args.batch_size,
                    'cuda_index': args.cuda_index,
                    'length_hidden': length_hidden,
                    'dropout': False,
                    'weight_decay': 0,
                    'init_zeros': True,
                    'num_flows': int(len(flow[0].t)),
                    'magnitude': magnitude,
                }

                with open(
                        os.path.join(
                            outf,
                            'Residual_flow_%s_%s_layer_%s_%smagnitude.txt' %
                            (args.dataset, out_dist, layer, magnitude)),
                        'w') as file:
                    file.write('date: %s\n' % (datetime.datetime.now()))
                    file.write(json.dumps(pram))

                score_in = np.asarray(score_in, dtype=np.float32)
                score_out = np.asarray(score_out, dtype=np.float32)
                score_data, score_labels = lib_generation.merge_and_generate_labels(
                    score_out, score_in)
                file_name = os.path.join(
                    outf, 'Residual_flow_%s_%s_layer_%s_%smagnitude' %
                    (args.dataset, out_dist, layer, magnitude))
                score_data = np.concatenate((score_data, score_labels), axis=1)
                np.savez(file_name, score_data, pram)
コード例 #8
0
def main():
    # set the path to pre-trained model and output
    pre_trained_net = './pre_trained/' + args.net_type + '_' + args.dataset + '.pth'
    args.outf = args.outf + args.net_type + '_' + args.dataset + '/'
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)
    # check the in-distribution dataset
    if args.dataset == 'cifar100':
        args.num_classes = 100
        out_dist_list = ['svhn', 'imagenet_resize', 'lsun_resize']
    elif args.dataset == 'svhn':
        out_dist_list = ['cifar10', 'imagenet_resize', 'lsun_resize']
    elif args.dataset == 'ham10000':
        #out_dist_list = ['cifar10', 'imagenet_resize', 'face', 'face_age', 'isic-2017', 'isic-2016']
        #out_dist_list = ['cifar10', 'face', 'face_age', 'isic-2017', 'isic-2016']
        #out_dist_list = ['cifar10', 'cifar100', 'svhn', 'imagenet_resize', 'lsun_resize', 'face', 'face_age', 'isic-2017', 'isic-2016']
        out_dist_list = [
            'ham10000-avg-smoothing', 'ham10000-brightness',
            'ham10000-contrast', 'ham10000-dilation', 'ham10000-erosion',
            'ham10000-med-smoothing', 'ham10000-rotation', 'ham10000-shift'
        ]

    # load networks
    if args.net_type == 'densenet':
        if args.dataset == 'svhn':
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.gpu)))
        else:
            model = torch.load(pre_trained_net,
                               map_location="cuda:" + str(args.gpu))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((125.3 / 255, 123.0 / 255, 113.9 / 255),
                                 (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0)),
        ])
    elif args.net_type == 'resnet':
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
    elif args.net_type == 'densenet121':
        model = DenseNet121(num_classes=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net,
                       map_location="cuda:" + str(args.gpu)).state_dict())
        in_transform = transforms.Compose([
            transforms.Resize(224),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize((0.7630069, 0.5456578, 0.5700767),
                                 (0.14093237, 0.15263236, 0.17000099))
        ])
    model.cuda()
    print('load model: ' + args.net_type)

    # load dataset
    print('load target data: ', args.dataset)
    train_loader, test_loader = data_loader.getTargetDataSet(
        args.dataset, args.batch_size, in_transform, args.dataroot)

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 32, 32).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    print('get sample mean and covariance')
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader)

    print('get Mahalanobis scores', num_output)
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print('Noise: ' + str(magnitude))
        for i in range(num_output):
            print('layer_num', i)
            M_in = lib_generation.get_Mahalanobis_score(model, test_loader, args.num_classes, args.outf, \
                                                        True, args.net_type, sample_mean, precision, i, magnitude)
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for out_dist in out_dist_list:
            out_test_loader = data_loader.getNonTargetDataSet(
                out_dist, args.batch_size, in_transform, args.dataroot)
            print('Out-distribution: ' + out_dist)
            for i in range(num_output):
                M_out = lib_generation.get_Mahalanobis_score(model, out_test_loader, args.num_classes, args.outf, \
                                                             False, args.net_type, sample_mean, precision, i, magnitude)
                M_out = np.asarray(M_out, dtype=np.float32)
                if i == 0:
                    Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
                else:
                    Mahalanobis_out = np.concatenate(
                        (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                        axis=1)

            Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
            Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
            Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
                Mahalanobis_out, Mahalanobis_in)
            file_name = os.path.join(
                args.outf, 'Mahalanobis_%s_%s_%s.npy' %
                (str(magnitude), args.dataset, out_dist))
            Mahalanobis_data = np.concatenate(
                (Mahalanobis_data, Mahalanobis_labels), axis=1)
            np.save(file_name, Mahalanobis_data)
コード例 #9
0
def main():
    # set the path to pre-trained model and output
    pre_trained_net = "./pre_trained/" + args.net_type + "_" + args.dataset + ".pth"
    args.outf = args.outf + args.net_type + "_" + args.dataset + "/"
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)
    # check the in-distribution dataset
    if args.dataset == "cifar100":
        args.num_classes = 100

    # load networks
    if args.net_type == "densenet":
        if args.dataset == "svhn":
            model = models.DenseNet3(100, int(args.num_classes))
            model.load_state_dict(
                torch.load(pre_trained_net,
                           map_location="cuda:" + str(args.gpu)))
        else:
            model = torch.load(pre_trained_net,
                               map_location="cuda:" + str(args.gpu))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(
                (125.3 / 255, 123.0 / 255, 113.9 / 255),
                (63.0 / 255, 62.1 / 255.0, 66.7 / 255.0),
            ),
        ])
    elif args.net_type == "resnet":
        model = models.ResNet34(num_c=args.num_classes)
        model.load_state_dict(
            torch.load(pre_trained_net, map_location="cuda:" + str(args.gpu)))
        in_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
    model.cuda()
    print("load model: " + args.net_type)

    # load dataset
    print("load target data: ", args.dataset)
    train_loader, _ = data_loader.getTargetDataSet(args.dataset,
                                                   args.batch_size,
                                                   in_transform, args.dataroot)
    test_clean_data = torch.load(args.outf + "clean_data_%s_%s_%s.pth" %
                                 (args.net_type, args.dataset, args.adv_type))
    test_adv_data = torch.load(args.outf + "adv_data_%s_%s_%s.pth" %
                               (args.net_type, args.dataset, args.adv_type))
    test_noisy_data = torch.load(args.outf + "noisy_data_%s_%s_%s.pth" %
                                 (args.net_type, args.dataset, args.adv_type))
    test_label = torch.load(args.outf + "label_%s_%s_%s.pth" %
                            (args.net_type, args.dataset, args.adv_type))

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 32, 32).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    print("get sample mean and covariance")
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader)

    print("get LID scores")
    LID, LID_adv, LID_noisy = lib_generation.get_LID(model, test_clean_data,
                                                     test_adv_data,
                                                     test_noisy_data,
                                                     test_label, num_output)
    overlap_list = [10, 20, 30, 40, 50, 60, 70, 80, 90]
    list_counter = 0
    for overlap in overlap_list:
        Save_LID = np.asarray(LID[list_counter], dtype=np.float32)
        Save_LID_adv = np.asarray(LID_adv[list_counter], dtype=np.float32)
        Save_LID_noisy = np.asarray(LID_noisy[list_counter], dtype=np.float32)
        Save_LID_pos = np.concatenate((Save_LID, Save_LID_noisy))
        LID_data, LID_labels = lib_generation.merge_and_generate_labels(
            Save_LID_adv, Save_LID_pos)
        file_name = os.path.join(
            args.outf,
            "LID_%s_%s_%s.npy" % (overlap, args.dataset, args.adv_type))
        LID_data = np.concatenate((LID_data, LID_labels), axis=1)
        np.save(file_name, LID_data)
        list_counter += 1

    print("get Mahalanobis scores")
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]
    for magnitude in m_list:
        print("\nNoise: " + str(magnitude))
        for i in range(num_output):
            M_in = lib_generation.get_Mahalanobis_score_adv(
                model,
                test_clean_data,
                test_label,
                args.num_classes,
                args.outf,
                args.net_type,
                sample_mean,
                precision,
                i,
                magnitude,
            )
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for i in range(num_output):
            M_out = lib_generation.get_Mahalanobis_score_adv(
                model,
                test_adv_data,
                test_label,
                args.num_classes,
                args.outf,
                args.net_type,
                sample_mean,
                precision,
                i,
                magnitude,
            )
            M_out = np.asarray(M_out, dtype=np.float32)
            if i == 0:
                Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
            else:
                Mahalanobis_out = np.concatenate(
                    (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                    axis=1)

        for i in range(num_output):
            M_noisy = lib_generation.get_Mahalanobis_score_adv(
                model,
                test_noisy_data,
                test_label,
                args.num_classes,
                args.outf,
                args.net_type,
                sample_mean,
                precision,
                i,
                magnitude,
            )
            M_noisy = np.asarray(M_noisy, dtype=np.float32)
            if i == 0:
                Mahalanobis_noisy = M_noisy.reshape((M_noisy.shape[0], -1))
            else:
                Mahalanobis_noisy = np.concatenate(
                    (Mahalanobis_noisy, M_noisy.reshape(
                        (M_noisy.shape[0], -1))),
                    axis=1)
        Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
        Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
        Mahalanobis_noisy = np.asarray(Mahalanobis_noisy, dtype=np.float32)
        Mahalanobis_pos = np.concatenate((Mahalanobis_in, Mahalanobis_noisy))

        Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
            Mahalanobis_out, Mahalanobis_pos)
        file_name = os.path.join(
            args.outf,
            "Mahalanobis_%s_%s_%s.npy" %
            (str(magnitude), args.dataset, args.adv_type),
        )

        Mahalanobis_data = np.concatenate(
            (Mahalanobis_data, Mahalanobis_labels), axis=1)
        np.save(file_name, Mahalanobis_data)
コード例 #10
0
def main():
    # set the path to pre-trained model and output
    args.outf = args.outf + args.net_type + '_' + args.dataset + '/'
    if os.path.isdir(args.outf) == False:
        os.mkdir(args.outf)
    torch.cuda.manual_seed(0)
    torch.cuda.set_device(args.gpu)

    out_dist_list = [
        'skin_cli', 'skin_derm', 'corrupted', 'corrupted_70', 'imgnet', 'nct',
        'final_test'
    ]

    # load networks
    if args.net_type == 'densenet_121':
        model = densenet_121.Net(models.densenet121(pretrained=False), 8)
        ckpt = torch.load("../checkpoints/densenet-121/checkpoint.pth")
        model.load_state_dict(ckpt['model_state_dict'])
        model.eval()
        model.cuda()
    elif args.net_type == 'mobilenet':
        model = mobilenet.Net(models.mobilenet_v2(pretrained=False), 8)
        ckpt = torch.load("../checkpoints/mobilenet/checkpoint.pth")
        model.load_state_dict(ckpt['model_state_dict'])
        model.eval()
        model.cuda()
        print("Done!")
    elif args.net_type == 'resnet_50':
        model = resnet_50.Net(models.resnet50(pretrained=False), 8)
        ckpt = torch.load("../checkpoints/resnet-50/checkpoint.pth")
        model.load_state_dict(ckpt['model_state_dict'])
        model.eval()
        model.cuda()
        print("Done!")
    elif args.net_type == 'vgg_16':
        model = vgg_16.Net(models.vgg16_bn(pretrained=False), 8)
        ckpt = torch.load("../checkpoints/vgg-16/checkpoint.pth")
        model.load_state_dict(ckpt['model_state_dict'])
        model.eval()
        model.cuda()
        print("Done!")
    else:
        raise Exception(f"There is no net_type={args.net_type} available.")

    in_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    print('load model: ' + args.net_type)

    # load dataset
    print('load target data: ', args.dataset)
    train_loader, test_loader = data_loader.getTargetDataSet(
        args.dataset, args.batch_size, in_transform, args.dataroot)

    # set information about feature extaction
    model.eval()
    temp_x = torch.rand(2, 3, 224, 224).cuda()
    temp_x = Variable(temp_x)
    temp_list = model.feature_list(temp_x)[1]
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    print('get sample mean and covariance')
    sample_mean, precision = lib_generation.sample_estimator(
        model, args.num_classes, feature_list, train_loader)

    print('get Mahalanobis scores')
    m_list = [0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005]

    for magnitude in m_list:
        print('Noise: ' + str(magnitude))
        for i in range(num_output):
            M_in = lib_generation.get_Mahalanobis_score(model, test_loader, args.num_classes, args.outf, \
                                                        True, args.net_type, sample_mean, precision, i, magnitude)
            M_in = np.asarray(M_in, dtype=np.float32)
            if i == 0:
                Mahalanobis_in = M_in.reshape((M_in.shape[0], -1))
            else:
                Mahalanobis_in = np.concatenate(
                    (Mahalanobis_in, M_in.reshape((M_in.shape[0], -1))),
                    axis=1)

        for out_dist in out_dist_list:
            out_test_loader = data_loader.getNonTargetDataSet(
                out_dist, args.batch_size, in_transform, args.dataroot)
            print('Out-distribution: ' + out_dist)
            for i in range(num_output):
                M_out = lib_generation.get_Mahalanobis_score(model, out_test_loader, args.num_classes, args.outf, \
                                                             False, args.net_type, sample_mean, precision, i, magnitude)
                M_out = np.asarray(M_out, dtype=np.float32)
                if i == 0:
                    Mahalanobis_out = M_out.reshape((M_out.shape[0], -1))
                else:
                    Mahalanobis_out = np.concatenate(
                        (Mahalanobis_out, M_out.reshape((M_out.shape[0], -1))),
                        axis=1)

            Mahalanobis_in = np.asarray(Mahalanobis_in, dtype=np.float32)
            Mahalanobis_out = np.asarray(Mahalanobis_out, dtype=np.float32)
            Mahalanobis_data, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
                Mahalanobis_out, Mahalanobis_in)
            file_name = os.path.join(
                args.outf, 'Mahalanobis_%s_%s_%s.npy' %
                (str(magnitude), args.dataset, out_dist))
            Mahalanobis_data = np.concatenate(
                (Mahalanobis_data, Mahalanobis_labels), axis=1)
            np.save(file_name, Mahalanobis_data)
コード例 #11
0
def get_conf(config, device, model, in_transform, train_loader, test_loader):

    # get layer list
    layer_list = config['exp_params']['feature_layers']

    # get feature list
    model.eval()
    input_dim = config['exp_params']['input_dim']  # 2 x 3 x 32 x 32

    if config['exp_params']['dataset'] != 'toy_data':
        temp_x = torch.rand(2, input_dim[0], input_dim[1],
                            input_dim[2]).to(device)
    else:
        temp_x = torch.rand(2, 2).to(device)
    _, temp_list = model.feature_list(temp_x, layer_list)

    # ASK : Why this round about way to get feature_list size? Using temp_x etc.
    # RESPONSE: number of layers
    num_output = len(temp_list)
    feature_list = np.empty(num_output)
    count = 0
    for out in temp_list:
        feature_list[count] = out.size(1)
        count += 1

    # m_list is the list of noise
    m_list = config['exp_params']['noise_params']['m_list']

    # calculate confidence components to be sent to regressor
    regressor_features = config['exp_params']['regressor_features']
    class_mean, class_precision, tied_precision, pca_list, knn_search_list, knn_mean, knn_precision = \
                get_inputs_for_computing_regressor_feature(regressor_features, model, config, num_output, feature_list, layer_list, train_loader, device)

    print("For in-distribution: {}".format(config['exp_params']['dataset']))
    init_reg_in = True
    for regressor_feature in regressor_features:
        # num_output is the number of layers
        for i in range(num_output):
            in_dist_input = get_features_for_regressor(
                regressor_feature, model, config, test_loader,
                config['exp_params']['dataset'], i, True, device, class_mean,
                class_precision, tied_precision, pca_list, knn_search_list,
                knn_mean, knn_precision)

            print("in_dist_input shape: ", in_dist_input.shape)
            in_dist_input = np.asarray(in_dist_input, dtype=np.float32)

            # ASK: what does score of regression mean?
            print("Mean score at layer {} for regression type {}: {}".format(
                i, regressor_feature, np.mean(in_dist_input)))

            if init_reg_in:
                regressor_in_dist_input = in_dist_input.reshape(
                    (in_dist_input.shape[0], -1))
                init_reg_in = False
            else:
                regressor_in_dist_input = np.concatenate(
                    (regressor_in_dist_input,
                     in_dist_input.reshape((in_dist_input.shape[0], -1))),
                    axis=1)

    print("Out-distributions to test agains: ",
          config['model_params']['out_dist_list'])
    for out_dist in config['model_params']['out_dist_list']:
        print('Out-distribution: ' + out_dist)
        if out_dist == 'subset_cifar100':
            out_test_loader = data_loader.getNonTargetDataSet(
                out_dist,
                config['trainer_params']['batch_size'],
                in_transform,
                config['exp_params']['dataroot'],
                idx=config['model_params']['out_idx'],
                num_oods=config['model_params']['num_ood_samples'])
        else:
            out_test_loader = data_loader.getNonTargetDataSet(
                out_dist, config['trainer_params']['batch_size'], in_transform,
                config['exp_params']['dataroot'])

        init_reg_in = True
        for regressor_feature in regressor_features:
            # num_output is the number of layers
            for i in range(num_output):
                out_dist_input = get_features_for_regressor(
                    regressor_feature, model, config, out_test_loader,
                    out_dist, i, False, device, class_mean, class_precision,
                    tied_precision, pca_list, knn_search_list, knn_mean,
                    knn_precision)

                print("out_dist_input shape- ", out_dist_input.shape)
                out_dist_input = np.asarray(out_dist_input, dtype=np.float32)
                print(
                    "Mean score at layer {} for regression type {}: {}".format(
                        i, regressor_feature, np.mean(out_dist_input)))
                if init_reg_in:
                    regressor_out_dist_input = out_dist_input.reshape(
                        (out_dist_input.shape[0], -1))
                    init_reg_in = False
                else:
                    regressor_out_dist_input = np.concatenate(
                        (regressor_out_dist_input,
                         out_dist_input.reshape(
                             (out_dist_input.shape[0], -1))),
                        axis=1)

        regressor_in_dist_input = np.asarray(regressor_in_dist_input,
                                             dtype=np.float32)
        regressor_out_dist_input = np.asarray(regressor_out_dist_input,
                                              dtype=np.float32)
        ood_output, Mahalanobis_labels = lib_generation.merge_and_generate_labels(
            regressor_out_dist_input, regressor_in_dist_input)
        file_name = os.path.join(
            config['logging_params']['outf'], 'Mahalanobis_%s_%s_%s.npy' %
            (str(m_list[0]), config['exp_params']['dataset'], out_dist))
        ood_output = np.concatenate((ood_output, Mahalanobis_labels), axis=1)
        np.save(file_name, ood_output)
    return ood_output