def fprop(self, input): # print("\nConvolution::fprop: alpha=%f, beta=%f" % (self.alpha, self.beta)) ws_data = ctypes.c_void_p(int(self.ws_ptr)) self.start.record() libcudnn.cudnnConvolutionForward(context.cudnn, self.alpha, self.in_desc.ptr, input.get_gpu_voidp(), self.filt_desc, self.W.get_gpu_voidp(), self.conv_desc, self.algo, ws_data, self.ws_size.value, self.beta, self.out_desc.ptr, self.output.get_gpu_voidp()) libcudnn.cudnnAddTensor(context.cudnn, 1.0, self.b_desc.ptr, self.bias.get_gpu_voidp(), 1.0, self.out_desc.ptr, self.output.get_gpu_voidp()) self.check_truth()
def benchmark_conv(kw, kh, bsz): start, end = (drv.Event(), drv.Event()) def start_bench(): start.record() def end_bench(): end.record() end.synchronize() return end.time_since(start) n_input = bsz filters_in = 3 filters_out = 64 height_in = 224 width_in = 224 height_filter = kh width_filter = kw pad_h = 3 pad_w = 3 vertical_stride = 1 horizontal_stride = 1 upscalex = 1 upscaley = 1 alpha = 1.0 beta = 1.0 # Input tensor X = gpuarray.to_gpu(np.random.rand(n_input, filters_in, height_in, width_in) .astype(np.float32)) # Filter tensor filters = gpuarray.to_gpu(np.random.rand(filters_out, filters_in, height_filter, width_filter).astype(np.float32)) # Descriptor for input X_desc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensor4dDescriptor(X_desc, tensor_format, data_type, n_input, filters_in, height_in, width_in) # Filter descriptor filters_desc = libcudnn.cudnnCreateFilterDescriptor() libcudnn.cudnnSetFilter4dDescriptor(filters_desc, data_type, filters_out, filters_in, height_filter, width_filter) # Convolution descriptor conv_desc = libcudnn.cudnnCreateConvolutionDescriptor() libcudnn.cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, vertical_stride, horizontal_stride, upscalex, upscaley, convolution_mode) # Get output dimensions (first two values are n_input and filters_out) _, _, height_output, width_output = libcudnn.cudnnGetConvolution2dForwardOutputDim( conv_desc, X_desc, filters_desc) # Output tensor Y = gpuarray.empty((n_input, filters_out, height_output, width_output), np.float32) y_desc = libcudnn.cudnncreatetensordescriptor() libcudnn.cudnnsettensor4ddescriptor(y_desc, tensor_format, data_type, n_input, filters_out, height_output, width_output) # Get pointers to GPU memory X_data = ctypes.c_void_p(int(X.gpudata)) filters_data = ctypes.c_void_p(int(filters.gpudata)) Y_data = ctypes.c_void_p(int(Y.gpudata)) # Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) # print("Cudnn algorithm = %d" % algo.value) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo) ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) start_bench() for i in range(10): libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) ms = end_bench() ws_ptr = None libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) return ms / 10
# Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) print("Cudnn algorithm = %d" % algo.value) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize( cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo) ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) start_bench() libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) end_bench("fprop") ws_ptr = None # Clean up libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) libcudnn.cudnnDestroy(cudnn_context)
libcudnn.cudnnSetTensor4dDescriptor(O_desc, NCHW_fmt, cu_dtype, N, K, P, Q) libcudnn.cudnnSetTensor4dDescriptor(E_desc, NCHW_fmt, cu_dtype, N, K, P, Q) libcudnn.cudnnSetFilter4dDescriptor(F_desc, cu_dtype, K, C, R, S) libcudnn.cudnnSetFilter4dDescriptor(U_desc, cu_dtype, K, C, R, S) algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn, I_desc, F_desc, C_desc, O_desc, fwd_pref, 0) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(cudnn, I_desc, F_desc, C_desc, O_desc, algo) #print algo.value, ws_size.value ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) start_bench() for r in (range(repeat)): libcudnn.cudnnConvolutionForward(cudnn, alpha, I_desc, I_data, F_desc, F_data, C_desc, algo, ws_data, ws_size.value, beta, O_desc, O_data) end_bench("fprop") ws_ptr = None start_bench() for r in (range(repeat)): libcudnn.cudnnConvolutionBackwardData(cudnn, alpha, F_desc, F_data, E_desc, E_data, C_desc, beta, B_desc, B_data) end_bench("bprop") start_bench() for r in (range(repeat)): libcudnn.cudnnConvolutionBackwardFilter(cudnn, alpha, I_desc, I_data, E_desc, E_data, C_desc, beta, U_desc, U_data) end_bench("updat")
X_data = ctypes.c_void_p(int(X.gpudata)) filters_data = ctypes.c_void_p(int(filters.gpudata)) Y_data = ctypes.c_void_p(int(Y.gpudata)) # Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) print("Cudnn algorithm = %d" % algo.value) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo) ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) start_bench() libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) end_bench("fprop") ws_ptr = None # Clean up libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) libcudnn.cudnnDestroy(cudnn_context)
convolution_mode) # Get output dimensions (first two values are n_input and filters_out) _, _, height_output, width_output = libcudnn.cudnnGetConvolution2dForwardOutputDim( conv_desc, X_desc, filters_desc) # Output tensor Y = gpuarray.empty((n_input, filters_out, height_output, width_output), np.float32) Y_desc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensor4dDescriptor(Y_desc, tensor_format, data_type, n_input, filters_out, height_output, width_output) # Get pointers to GPU memory X_data = ctypes.c_void_p(int(X.gpudata)) filters_data = ctypes.c_void_p(int(filters.gpudata)) Y_data = ctypes.c_void_p(int(Y.gpudata)) # Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, None, 0, beta, Y_desc, Y_data) # Clean up libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) libcudnn.cudnnDestroy(cudnn_context)
libcudnn.cudnnSetFilter4dDescriptor(U_desc, cu_dtype, K, C, R, S) algo = libcudnn.cudnnGetConvolutionForwardAlgorithm( cudnn, I_desc, F_desc, C_desc, O_desc, fwd_pref, 0) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize( cudnn, I_desc, F_desc, C_desc, O_desc, algo) #print algo.value, ws_size.value ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) start_bench() for r in (range(repeat)): libcudnn.cudnnConvolutionForward(cudnn, alpha, I_desc, I_data, F_desc, F_data, C_desc, algo, ws_data, ws_size.value, beta, O_desc, O_data) end_bench("fprop") ws_ptr = None start_bench() for r in (range(repeat)): libcudnn.cudnnConvolutionBackwardData(cudnn, alpha, F_desc, F_data, E_desc, E_data, C_desc, beta, B_desc, B_data) end_bench("bprop") start_bench() for r in (range(repeat)): libcudnn.cudnnConvolutionBackwardFilter(cudnn, alpha, I_desc, I_data,