def __init__(self, config, name="Convolution"): super().__init__(config, name) self.output = None self.W = self.load_tensor(config, 0) self.alpha = 1.0 self.beta = 0.0 self.in_desc = None self.out_desc = None self.num_filter_maps = self.W.shape[0] self.num_filter_channels = self.W.shape[1] self.bias = self.load_tensor(config, 1, shape=(1, self.num_filter_maps, 1, 1)) # assert(self.bias.shape[0] == self.num_filter_maps) # self.bias = self.bias.reshape((1, self.num_filter_maps, 1, 1)) # print(self.bias.shape) self.b_desc = self.bias.get_cudnn_tensor_desc() self.filt_desc = libcudnn.cudnnCreateFilterDescriptor() print("FILT:", self.W.dtype, gputensor.np_2_cudnn_dtype[self.W.dtype]) print("FILT:", self.W.shape, self.num_filter_maps, self.num_filter_channels, self.kH, self.kW) libcudnn.cudnnSetFilter4dDescriptor(self.filt_desc, gputensor.np_2_cudnn_dtype[self.W.dtype], self.num_filter_maps, self.num_filter_channels, self.kH, self.kW) # print("B:", self.bias.shape) # self.bias_desc = self.conv_desc = libcudnn.cudnnCreateConvolutionDescriptor() libcudnn.cudnnSetConvolution2dDescriptor(self.conv_desc, self.padH, self.padW, self.dH, self.dW, 1, 1, self.convolution_mode)
def __init__(self, config, name="Convolution"): super().__init__(config, name) self.output = None self.W = self.load_tensor(config, 0) self.alpha = 1.0 self.beta = 0.0 self.in_desc = None self.out_desc = None self.num_filter_maps = self.W.shape[0] self.num_filter_channels = self.W.shape[1] self.bias = self.load_tensor(config, 1, shape=(1, self.num_filter_maps, 1, 1)) # assert(self.bias.shape[0] == self.num_filter_maps) # self.bias = self.bias.reshape((1, self.num_filter_maps, 1, 1)) # print(self.bias.shape) self.b_desc = self.bias.get_cudnn_tensor_desc() self.filt_desc = libcudnn.cudnnCreateFilterDescriptor() print("FILT:", self.W.dtype, gputensor.np_2_cudnn_dtype[self.W.dtype]) print("FILT:", self.W.shape, self.num_filter_maps, self.num_filter_channels, self.kH, self.kW) libcudnn.cudnnSetFilter4dDescriptor( self.filt_desc, gputensor.np_2_cudnn_dtype[self.W.dtype], self.num_filter_maps, self.num_filter_channels, self.kH, self.kW) # print("B:", self.bias.shape) # self.bias_desc = self.conv_desc = libcudnn.cudnnCreateConvolutionDescriptor() libcudnn.cudnnSetConvolution2dDescriptor(self.conv_desc, self.padH, self.padW, self.dH, self.dW, 1, 1, self.convolution_mode)
def benchmark_conv(kw, kh, bsz): start, end = (drv.Event(), drv.Event()) def start_bench(): start.record() def end_bench(): end.record() end.synchronize() return end.time_since(start) n_input = bsz filters_in = 3 filters_out = 64 height_in = 224 width_in = 224 height_filter = kh width_filter = kw pad_h = 3 pad_w = 3 vertical_stride = 1 horizontal_stride = 1 upscalex = 1 upscaley = 1 alpha = 1.0 beta = 1.0 # Input tensor X = gpuarray.to_gpu(np.random.rand(n_input, filters_in, height_in, width_in) .astype(np.float32)) # Filter tensor filters = gpuarray.to_gpu(np.random.rand(filters_out, filters_in, height_filter, width_filter).astype(np.float32)) # Descriptor for input X_desc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensor4dDescriptor(X_desc, tensor_format, data_type, n_input, filters_in, height_in, width_in) # Filter descriptor filters_desc = libcudnn.cudnnCreateFilterDescriptor() libcudnn.cudnnSetFilter4dDescriptor(filters_desc, data_type, filters_out, filters_in, height_filter, width_filter) # Convolution descriptor conv_desc = libcudnn.cudnnCreateConvolutionDescriptor() libcudnn.cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, vertical_stride, horizontal_stride, upscalex, upscaley, convolution_mode) # Get output dimensions (first two values are n_input and filters_out) _, _, height_output, width_output = libcudnn.cudnnGetConvolution2dForwardOutputDim( conv_desc, X_desc, filters_desc) # Output tensor Y = gpuarray.empty((n_input, filters_out, height_output, width_output), np.float32) y_desc = libcudnn.cudnncreatetensordescriptor() libcudnn.cudnnsettensor4ddescriptor(y_desc, tensor_format, data_type, n_input, filters_out, height_output, width_output) # Get pointers to GPU memory X_data = ctypes.c_void_p(int(X.gpudata)) filters_data = ctypes.c_void_p(int(filters.gpudata)) Y_data = ctypes.c_void_p(int(Y.gpudata)) # Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) # print("Cudnn algorithm = %d" % algo.value) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo) ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) start_bench() for i in range(10): libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) ms = end_bench() ws_ptr = None libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) return ms / 10
def get_filter4d_desc(x, mode=_default_conv_mode): """Create a 2d convolution filter descriptor.""" k, c, h, w = x.shape desc = libcudnn.cudnnCreateFilterDescriptor() libcudnn.cudnnSetFilter4dDescriptor(desc, _dtypes[x.dtype], k, c, h, w) return Auto(desc, libcudnn.cudnnDestroyFilterDescriptor)
libcudnn.cudnnSetTensorNdDescriptor(xdesc, 0, 3, [inputsize, minibatch, seqlength]) for xdesc in xdescs ] hxdesc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensorNdDescriptor(hxdesc, 0, 3, [hiddensize, minibatch, numlayers]) cxdesc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensorNdDescriptor(cxdesc, 0, 3, [hiddensize, minibatch, numlayers]) paramssize = libcudnn.cudnnGetRNNParamsSize(handle, rnndesc, xdescs) wdesc = libcudnn.cudnnCreateFilterDescriptor() libcudnn.cudnnSetFilterNdDescriptor(wdesc, 0, 0, 3, [paramssize, 1, 1]) ydescs = [libcudnn.cudnnCreateTensorDescriptor() for _ in xrange(seqlength)] [ libcudnn.cudnnSetTensorNdDescriptor(ydesc, 0, 3, [hiddensize, minibatch, seqlength]) for ydesc in ydescs ] hydesc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensorNdDescriptor(hydesc, 0, 3, [hiddensize, minibatch, numlayers]) cydesc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensorNdDescriptor(cydesc, 0, 3,
end.synchronize() msecs = end.time_since(start) / repeat gflops = conv.flops / (msecs * 1000000.0) print "%7.3f msecs %8.3f gflops (%s: %s)" % (msecs, gflops, op, conv) ng = NervanaGPU(stochastic_round=False, bench=True) # Create a cuDNN context cudnn = libcudnn.cudnnCreate() C_desc = libcudnn.cudnnCreateConvolutionDescriptor() I_desc = libcudnn.cudnnCreateTensorDescriptor() O_desc = libcudnn.cudnnCreateTensorDescriptor() E_desc = libcudnn.cudnnCreateTensorDescriptor() B_desc = libcudnn.cudnnCreateTensorDescriptor() F_desc = libcudnn.cudnnCreateFilterDescriptor() U_desc = libcudnn.cudnnCreateFilterDescriptor() # Set some options and tensor dimensions NCHW_fmt = libcudnn.cudnnTensorFormat['CUDNN_TENSOR_NCHW'] cu_dtype = libcudnn.cudnnDataType['CUDNN_DATA_FLOAT'] conv_mode = libcudnn.cudnnConvolutionMode['CUDNN_CROSS_CORRELATION'] fwd_pref = libcudnn.cudnnConvolutionFwdPreference['CUDNN_CONVOLUTION_FWD_NO_WORKSPACE'] # CUDNN_CONVOLUTION_FWD_NO_WORKSPACE # CUDNN_CONVOLUTION_FWD_PREFER_FASTEST # N C K D H W T R S pad str for dims in ( ( 64, 3, 64, 1, 224,224, 1, 3, 3, 0,1,1, 1,1,1), # VGG ( 64, 64, 64, 1, 224,224, 1, 3, 3, 0,1,1, 1,1,1), ( 64, 64,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1), ( 64,128,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),