コード例 #1
0
def test_ssb_rotate():
    ctx = lt.Context(executor=InlineJobExecutor())
    dtype = np.float64

    scaling = 4
    det = 45
    shape = (29, 30, det, det)
    #  ? shape = np.random.uniform(1, 300, (4,1,))

    # The acceleration voltage U in keV
    U = 300
    lamb = wavelength(U)
    # STEM pixel size in m, here 50 STEM pixels on 0.5654 nm
    dpix = 0.5654 / 50 * 1e-9
    # STEM semiconvergence angle in radians
    semiconv = 25e-3
    # Diameter of the primary beam in the diffraction pattern in pixels
    semiconv_pix = 78.6649 / scaling

    cy = det // 2
    cx = det // 2

    input_data = (np.random.uniform(0, 1, np.prod(shape)) *
                  np.linspace(1.0, 1000.0, num=np.prod(shape)))
    input_data = input_data.astype(np.float64).reshape(shape)

    data_90deg = np.zeros_like(input_data)

    # Rotate 90 degrees clockwise
    for y in range(det):
        for x in range(det):
            data_90deg[:, :, x, det - 1 - y] = input_data[:, :, y, x]

    udf = SSB_UDF(lamb=lamb,
                  dpix=dpix,
                  semiconv=semiconv,
                  semiconv_pix=semiconv_pix,
                  dtype=dtype,
                  cy=cy,
                  cx=cx,
                  transformation=rotate_deg(-90.))

    dataset = MemoryDataSet(
        data=data_90deg,
        tileshape=(20, shape[2], shape[3]),
        num_partitions=2,
        sig_dims=2,
    )

    result = ctx.run_udf(udf=udf, dataset=dataset)

    result_f, _ = reference_ssb(input_data,
                                U=U,
                                dpix=dpix,
                                semiconv=semiconv,
                                semiconv_pix=semiconv_pix,
                                cy=cy,
                                cx=cx)

    assert np.allclose(result['pixels'].data, result_f)
コード例 #2
0
ファイル: test_coordinates.py プロジェクト: sk1p/LiberTEM
def test_rotate_deg():
    y, x = np.random.random((2, 7))
    degrees = 23
    r_y, r_x = c.rotate_deg(degrees) @ (y, x)
    r_y2, r_x2 = rotate_deg(y, x, degrees)
    assert np.allclose(r_y, r_y2)
    assert np.allclose(r_x, r_x2)
コード例 #3
0
ファイル: com.py プロジェクト: Taimin/LiberTEM
    def get_generic_results(self, img_sum, img_y, img_x):
        ref_x = self.parameters["cx"]
        ref_y = self.parameters["cy"]
        y_centers_raw, x_centers_raw = center_shifts(img_sum, img_y, img_x, ref_y, ref_x)
        shape = y_centers_raw.shape
        if self.parameters["flip_y"]:
            transform = flip_y()
        else:
            transform = identity()
        # Transformations are applied right to left
        transform = rotate_deg(self.parameters["scan_rotation"]) @ transform
        y_centers, x_centers = transform @ (y_centers_raw.reshape(-1), x_centers_raw.reshape(-1))

        y_centers = y_centers.reshape(shape)
        x_centers = x_centers.reshape(shape)

        if img_sum.dtype.kind == 'c':
            x_real, x_imag = np.real(x_centers), np.imag(x_centers)
            y_real, y_imag = np.real(y_centers), np.imag(y_centers)

            return COMResultSet([
                AnalysisResult(raw_data=x_real, visualized=visualize_simple(x_real),
                       key="x_real", title="x [real]", desc="x component of the center"),
                AnalysisResult(raw_data=y_real, visualized=visualize_simple(y_real),
                       key="y_real", title="y [real]", desc="y component of the center"),
                AnalysisResult(raw_data=x_imag, visualized=visualize_simple(x_imag),
                       key="x_imag", title="x [imag]", desc="x component of the center"),
                AnalysisResult(raw_data=y_imag, visualized=visualize_simple(y_imag),
                       key="y_imag", title="y [imag]", desc="y component of the center"),
            ])
        else:
            f = CMAP_CIRCULAR_DEFAULT.rgb_from_vector((y_centers, x_centers))
            d = divergence(y_centers, x_centers)
            c = curl_2d(y_centers, x_centers)
            m = magnitude(y_centers, x_centers)

            return COMResultSet([
                AnalysisResult(raw_data=(x_centers, y_centers), visualized=f,
                       key="field", title="field", desc="cubehelix colorwheel visualization",
                       include_in_download=False),
                AnalysisResult(raw_data=m, visualized=visualize_simple(m),
                       key="magnitude", title="magnitude", desc="magnitude of the vector field"),
                AnalysisResult(raw_data=d, visualized=visualize_simple(d),
                       key="divergence", title="divergence", desc="divergence of the vector field"),
                AnalysisResult(raw_data=c, visualized=visualize_simple(c),
                       key="curl", title="curl", desc="curl of the 2D vector field"),
                AnalysisResult(raw_data=x_centers, visualized=visualize_simple(x_centers),
                       key="x", title="x", desc="x component of the center"),
                AnalysisResult(raw_data=y_centers, visualized=visualize_simple(y_centers),
                       key="y", title="y", desc="y component of the center"),
            ])
コード例 #4
0
def test_transformation_rot90():
    data_shape = np.random.randint(1, 77, 3, dtype=int)
    data = np.random.random(data_shape)
    source_shape = data_shape[1:]
    target_shape = tuple(reversed(data_shape[1:]))
    m = image_transformation_matrix(
        source_shape=source_shape,
        target_shape=target_shape,
        affine_transformation=lambda x: x @ rotate_deg(90),
        pre_transform=lambda x: x - np.array(target_shape) / 2 + 0.5,
        post_transform=lambda x: np.round(x + np.array(source_shape) / 2 - 0.5
                                          ).astype(int))
    res = apply_matrix(data, m, target_shape)
    # positive rotations are clockwise, upper right corner
    # is now lower right corner
    assert np.allclose(data[:, 0, -1], res[:, -1, -1])
    # alternative rotation: transpose and flip
    assert np.allclose(np.flip(np.transpose(data, axes=(0, 2, 1)), axis=2),
                       res)
コード例 #5
0
ファイル: com.py プロジェクト: sk1p/LiberTEM
def apply_correction(y_centers,
                     x_centers,
                     scan_rotation,
                     flip_y,
                     forward=True):
    shape = y_centers.shape
    if flip_y:
        transform = coordinates.flip_y()
    else:
        transform = coordinates.identity()
    # Transformations are applied right to left
    transform = coordinates.rotate_deg(scan_rotation) @ transform
    y_centers = y_centers.reshape(-1)
    x_centers = x_centers.reshape(-1)
    if not forward:
        transform = np.linalg.inv(transform)
    y_transformed, x_transformed = transform @ (y_centers, x_centers)
    y_transformed = y_transformed.reshape(shape)
    x_transformed = x_transformed.reshape(shape)
    return (y_transformed, x_transformed)
コード例 #6
0
ファイル: com.py プロジェクト: saisunku/LiberTEM
    def get_generic_results(self, img_sum, img_y, img_x, damage):
        from libertem.viz import CMAP_CIRCULAR_DEFAULT, visualize_simple
        ref_x = self.parameters["cx"]
        ref_y = self.parameters["cy"]
        y_centers_raw, x_centers_raw = center_shifts(img_sum, img_y, img_x,
                                                     ref_y, ref_x)
        shape = y_centers_raw.shape
        if self.parameters["flip_y"]:
            transform = flip_y()
        else:
            transform = identity()
        # Transformations are applied right to left
        transform = rotate_deg(self.parameters["scan_rotation"]) @ transform
        y_centers, x_centers = transform @ (y_centers_raw.reshape(-1),
                                            x_centers_raw.reshape(-1))

        y_centers = y_centers.reshape(shape)
        x_centers = x_centers.reshape(shape)

        if img_sum.dtype.kind == 'c':
            x_real, x_imag = np.real(x_centers), np.imag(x_centers)
            y_real, y_imag = np.real(y_centers), np.imag(y_centers)

            return COMResultSet([
                AnalysisResult(raw_data=x_real,
                               visualized=visualize_simple(x_real,
                                                           damage=damage),
                               key="x_real",
                               title="x [real]",
                               desc="x component of the center"),
                AnalysisResult(raw_data=y_real,
                               visualized=visualize_simple(y_real,
                                                           damage=damage),
                               key="y_real",
                               title="y [real]",
                               desc="y component of the center"),
                AnalysisResult(raw_data=x_imag,
                               visualized=visualize_simple(x_imag,
                                                           damage=damage),
                               key="x_imag",
                               title="x [imag]",
                               desc="x component of the center"),
                AnalysisResult(raw_data=y_imag,
                               visualized=visualize_simple(y_imag,
                                                           damage=damage),
                               key="y_imag",
                               title="y [imag]",
                               desc="y component of the center"),
            ])
        else:
            damage = damage & np.isfinite(x_centers) & np.isfinite(y_centers)
            # Make sure that an all-False `damage` is handled since np.max()
            # trips on an empty array.
            # As a remark -- the NumPy error message
            # "zero-size array to reduction operation maximum which has no identity"
            # is probably wrong since -np.inf is the identity element for maximum on
            # floating point numbers and should be returned here.
            if np.count_nonzero(damage) > 0:
                vmax = np.sqrt(
                    np.max(x_centers[damage]**2 + y_centers[damage]**2))
            else:
                vmax = 1
            f = CMAP_CIRCULAR_DEFAULT.rgb_from_vector(
                (x_centers, y_centers, 0), vmax=vmax)
            d = divergence(y_centers, x_centers)
            c = curl_2d(y_centers, x_centers)
            m = magnitude(y_centers, x_centers)

            return COMResultSet([
                AnalysisResult(raw_data=(x_centers, y_centers),
                               visualized=f,
                               key="field",
                               title="field",
                               desc="cubehelix colorwheel visualization",
                               include_in_download=False),
                AnalysisResult(raw_data=m,
                               visualized=visualize_simple(m, damage=damage),
                               key="magnitude",
                               title="magnitude",
                               desc="magnitude of the vector field"),
                AnalysisResult(raw_data=d,
                               visualized=visualize_simple(d, damage=damage),
                               key="divergence",
                               title="divergence",
                               desc="divergence of the vector field"),
                AnalysisResult(raw_data=c,
                               visualized=visualize_simple(c, damage=damage),
                               key="curl",
                               title="curl",
                               desc="curl of the 2D vector field"),
                AnalysisResult(raw_data=x_centers,
                               visualized=visualize_simple(x_centers,
                                                           damage=damage),
                               key="x",
                               title="x",
                               desc="x component of the center"),
                AnalysisResult(raw_data=y_centers,
                               visualized=visualize_simple(y_centers,
                                                           damage=damage),
                               key="y",
                               title="y",
                               desc="y component of the center"),
            ])