コード例 #1
0
def mpf_atan(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return atan_inf(0, prec, rnd)
        if x == fninf: return atan_inf(1, prec, rnd)
        return fnan
    mag = exp + bc
    # Essentially infinity
    if mag > prec+20:
        return atan_inf(sign, prec, rnd)
    # Essentially ~ x
    if -mag > prec+20:
        return mpf_perturb(x, 1-sign, prec, rnd)
    wp = prec + 30 + abs(mag)
    # For large x, use atan(x) = pi/2 - atan(1/x)
    if mag >= 2:
        x = mpf_rdiv_int(1, x, wp)
        reciprocal = True
    else:
        reciprocal = False
    t = to_fixed(x, wp)
    if sign:
        t = -t
    if wp < ATAN_TAYLOR_PREC:
        a = atan_taylor(t, wp)
    else:
        a = atan_newton(t, wp)
    if reciprocal:
        a = ((pi_fixed(wp)>>1)+1) - a
    if sign:
        a = -a
    return from_man_exp(a, -wp, prec, rnd)
コード例 #2
0
ファイル: libelefun.py プロジェクト: jcockayne/sympy-rkern
def mpf_atan(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return atan_inf(0, prec, rnd)
        if x == fninf: return atan_inf(1, prec, rnd)
        return fnan
    mag = exp + bc
    # Essentially infinity
    if mag > prec+20:
        return atan_inf(sign, prec, rnd)
    # Essentially ~ x
    if -mag > prec+20:
        return mpf_perturb(x, 1-sign, prec, rnd)
    wp = prec + 30 + abs(mag)
    # For large x, use atan(x) = pi/2 - atan(1/x)
    if mag >= 2:
        x = mpf_rdiv_int(1, x, wp)
        reciprocal = True
    else:
        reciprocal = False
    t = to_fixed(x, wp)
    if sign:
        t = -t
    if wp < ATAN_TAYLOR_PREC:
        a = atan_taylor(t, wp)
    else:
        a = atan_newton(t, wp)
    if reciprocal:
        a = ((pi_fixed(wp)>>1)+1) - a
    if sign:
        a = -a
    return from_man_exp(a, -wp, prec, rnd)
コード例 #3
0
def mpf_cos_sin_pi(x, prec, rnd=round_fast):
    """Accurate computation of (cos(pi*x), sin(pi*x))
    for x close to an integer"""
    sign, man, exp, bc = x
    if not man:
        return cos_sin(x, prec, rnd)
    # Exactly an integer or half-integer?
    if exp >= -1:
        if exp == -1:
            c = fzero
            s = (fone, fnone)[bool(man & 2) ^ sign]
        elif exp == 0:
            c, s = (fnone, fzero)
        else:
            c, s = (fone, fzero)
        return c, s
    # Close to 0 ?
    size = exp + bc
    if size < -(prec+5):
        c = mpf_perturb(fone, 1, prec, rnd)
        s = mpf_perturb(mpf_mul(x, mpf_pi(prec)), sign, prec, rnd)
        return c, s
    if sign:
        man = -man
    # Subtract nearest half-integer (= modulo pi/2)
    nhint = ((man >> (-exp-2)) + 1) >> 1
    man = man - (nhint << (-exp-1))
    x = from_man_exp(man, exp, prec)
    x = mpf_mul(x, mpf_pi(prec), prec)
    # XXX: with some more work, could call calc_cos_sin,
    # to save some time and to get rounding right
    case = nhint % 4
    if case == 0:
        c, s = cos_sin(x, prec, rnd)
    elif case == 1:
        s, c = cos_sin(x, prec, rnd)
        c = mpf_neg(c)
    elif case == 2:
        c, s = cos_sin(x, prec, rnd)
        c = mpf_neg(c)
        s = mpf_neg(s)
    else:
        s, c = cos_sin(x, prec, rnd)
        s = mpf_neg(s)
    return c, s
コード例 #4
0
def cosh_sinh(x, prec, rnd=round_fast, tanh=0):
    """Simultaneously compute (cosh(x), sinh(x)) for real x"""
    sign, man, exp, bc = x
    if (not man) and exp:
        if tanh:
            if x == finf: return fone
            if x == fninf: return fnone
            return fnan
        if x == finf: return (finf, finf)
        if x == fninf: return (finf, fninf)
        return fnan, fnan

    if sign:
        man = -man

    mag = exp + bc
    prec2 = prec + 20

    if mag < -3:
        # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
        if mag < -prec-2:
            if tanh:
                return mpf_perturb(x, 1-sign, prec, rnd)
            cosh = mpf_perturb(fone, 0, prec, rnd)
            sinh = mpf_perturb(x, sign, prec, rnd)
            return cosh, sinh

        # Avoid cancellation when computing sinh
        # TODO: might be faster to use sinh series directly
        prec2 += (-mag) + 4

    # In the general case, we use
    #    cosh(x) = (exp(x) + exp(-x))/2
    #    sinh(x) = (exp(x) - exp(-x))/2
    # and note that the exponential only needs to be computed once.
    ep = mpf_exp(x, prec2)
    em = mpf_div(fone, ep, prec2)
    if tanh:
        ch = mpf_add(ep, em, prec2, rnd)
        sh = mpf_sub(ep, em, prec2, rnd)
        return mpf_div(sh, ch, prec, rnd)
    else:
        ch = mpf_shift(mpf_add(ep, em, prec, rnd), -1)
        sh = mpf_shift(mpf_sub(ep, em, prec, rnd), -1)
        return ch, sh
コード例 #5
0
ファイル: gammazeta.py プロジェクト: xinjie0831/AMC
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s + 1, wp), from_int(s - 1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp * 0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE**s)
        t += 1 << max(0, wp - s * 2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp) / (s - 1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp / 2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s * math.log(k, 2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec),
                                wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k + 1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp + 1 - s)))
    if (s in zeta_int_cache
            and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp - wp))
    return from_man_exp(t, -wp - wp, prec, rnd)
コード例 #6
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp*0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE ** s)
        t += 1 << max(0, wp - s*2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp)/(s-1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp/2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s*math.log(k,2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp+1-s)))
    if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp))
    return from_man_exp(t, -wp-wp, prec, rnd)
コード例 #7
0
ファイル: libhyper.py プロジェクト: Aang/sympy
def mpf_erf(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return fone
        if x== fninf: return fnone
        return fnan
    size = exp + bc
    lg = math.log
    # The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits
    if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2):
        if sign:
            return mpf_perturb(fnone, 0, prec, rnd)
        else:
            return mpf_perturb(fone, 1, prec, rnd)
    # erf(x) ~ 2*x/sqrt(pi) close to 0
    if size < -prec:
        # 2*x
        x = mpf_shift(x,1)
        c = mpf_sqrt(mpf_pi(prec+20), prec+20)
        # TODO: interval rounding
        return mpf_div(x, c, prec, rnd)
    wp = prec + abs(size) + 25
    # Taylor series for erf, fixed-point summation
    t = abs(to_fixed(x, wp))
    t2 = (t*t) >> wp
    s, term, k = t, 12345, 1
    while term:
        t = ((t * t2) >> wp) // k
        term = t // (2*k+1)
        if k & 1:
            s -= term
        else:
            s += term
        k += 1
    s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp)
    if sign:
        s = -s
    return from_man_exp(s, -wp, prec, rnd)
コード例 #8
0
ファイル: libhyper.py プロジェクト: laudehenri/rSymPy
def mpf_erf(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return fone
        if x == fninf: return fnone
        return fnan
    size = exp + bc
    lg = math.log
    # The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits
    if size > 3 and 2 * (size - 1) + 0.528766 > lg(prec, 2):
        if sign:
            return mpf_perturb(fnone, 0, prec, rnd)
        else:
            return mpf_perturb(fone, 1, prec, rnd)
    # erf(x) ~ 2*x/sqrt(pi) close to 0
    if size < -prec:
        # 2*x
        x = mpf_shift(x, 1)
        c = mpf_sqrt(mpf_pi(prec + 20), prec + 20)
        # TODO: interval rounding
        return mpf_div(x, c, prec, rnd)
    wp = prec + abs(size) + 20
    # Taylor series for erf, fixed-point summation
    t = abs(to_fixed(x, wp))
    t2 = (t * t) >> wp
    s, term, k = t, 12345, 1
    while term:
        t = ((t * t2) >> wp) // k
        term = t // (2 * k + 1)
        if k & 1:
            s -= term
        else:
            s += term
        k += 1
    s = (s << (wp + 1)) // sqrt_fixed(pi_fixed(wp), wp)
    if sign:
        s = -s
    return from_man_exp(s, -wp, wp, rnd)
コード例 #9
0
def mpf_asinh(x, prec, rnd=round_fast):
    wp = prec + 20
    sign, man, exp, bc = x
    mag = exp+bc
    if mag < -8:
        if mag < -wp:
            return mpf_perturb(x, 1-sign, prec, rnd)
        wp += (-mag)
    # asinh(x) = log(x+sqrt(x**2+1))
    # use reflection symmetry to avoid cancellation
    q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp)
    q = mpf_add(mpf_abs(x), q, wp)
    if sign:
        return mpf_neg(mpf_log(q, prec, negative_rnd[rnd]))
    else:
        return mpf_log(q, prec, rnd)
コード例 #10
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        return mpf_pow_int(mpf_e(prec + 10), (-1)**sign * (man << exp), prec,
                           rnd)
    mag = bc + exp
    if mag < -prec - 10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2 * wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        r = int(0.7 * wp**0.5)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series2(t, wp, r)
    bc = wp - 2 + bctable[int(man >> (wp - 2))]
    return normalize(0, man, int(-wp + n), bc, prec, rnd)
コード例 #11
0
ファイル: libelefun.py プロジェクト: jcockayne/sympy-rkern
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        return mpf_pow_int(mpf_e(prec+10), (-1)**sign *(man<<exp), prec, rnd)
    mag = bc+exp
    if mag < -prec-10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2*wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        r = int(0.7 * wp**0.5)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series2(t, wp, r)
    bc = wp - 2 + bctable[int(man >> (wp - 2))]
    return normalize(0, man, int(-wp+n), bc, prec, rnd)
コード例 #12
0
ファイル: libelefun.py プロジェクト: vks/sympy
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if man:
        mag = bc + exp
        wp = prec + 14
        if sign:
            man = -man
        # TODO: the best cutoff depends on both x and the precision.
        if prec > 600 and exp >= 0:
            # Need about log2(exp(n)) ~= 1.45*mag extra precision
            e = mpf_e(wp + int(1.45 * mag))
            return mpf_pow_int(e, man << exp, prec, rnd)
        if mag < -wp:
            return mpf_perturb(fone, sign, prec, rnd)
        # |x| >= 2
        if mag > 1:
            # For large arguments: exp(2^mag*(1+eps)) =
            # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
            # so about mag extra bits is required.
            wpmod = wp + mag
            offset = exp + wpmod
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            lg2 = ln2_fixed(wpmod)
            n, t = divmod(t, lg2)
            n = int(n)
            t >>= mag
        else:
            offset = exp + wp
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            n = 0
        man = exp_basecase(t, wp)
        return from_man_exp(man, n - wp, prec, rnd)
    if not exp:
        return fone
    if x == fninf:
        return fzero
    return x
コード例 #13
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if man:
        mag = bc + exp
        wp = prec + 14
        if sign:
            man = -man
        # TODO: the best cutoff depends on both x and the precision.
        if prec > 600 and exp >= 0:
            # Need about log2(exp(n)) ~= 1.45*mag extra precision
            e = mpf_e(wp + int(1.45 * mag))
            return mpf_pow_int(e, man << exp, prec, rnd)
        if mag < -wp:
            return mpf_perturb(fone, sign, prec, rnd)
        # |x| >= 2
        if mag > 1:
            # For large arguments: exp(2^mag*(1+eps)) =
            # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
            # so about mag extra bits is required.
            wpmod = wp + mag
            offset = exp + wpmod
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            lg2 = ln2_fixed(wpmod)
            n, t = divmod(t, lg2)
            n = int(n)
            t >>= mag
        else:
            offset = exp + wp
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            n = 0
        man = exp_basecase(t, wp)
        return from_man_exp(man, n - wp, prec, rnd)
    if not exp:
        return fone
    if x == fninf:
        return fzero
    return x
コード例 #14
0
def mpf_atanh(x, prec, rnd=round_fast):
    # atanh(x) = log((1+x)/(1-x))/2
    sign, man, exp, bc = x
    if (not man) and exp:
        if x in (fzero, fnan):
            return x
        raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
    mag = bc + exp
    if mag > 0:
        if mag == 1 and man == 1:
            return [finf, fninf][sign]
        raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
    wp = prec + 15
    if mag < -8:
        if mag < -wp:
            return mpf_perturb(x, sign, prec, rnd)
        wp += (-mag)
    a = mpf_add(x, fone, wp)
    b = mpf_sub(fone, x, wp)
    return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)
コード例 #15
0
def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0):
    """Simultaneously compute (cosh(x), sinh(x)) for real x"""
    sign, man, exp, bc = x
    if (not man) and exp:
        if tanh:
            if x == finf: return fone
            if x == fninf: return fnone
            return fnan
        if x == finf: return (finf, finf)
        if x == fninf: return (finf, fninf)
        return fnan, fnan
    mag = exp + bc
    wp = prec + 14
    if mag < -4:
        # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
        if mag < -wp:
            if tanh:
                return mpf_perturb(x, 1 - sign, prec, rnd)
            cosh = mpf_perturb(fone, 0, prec, rnd)
            sinh = mpf_perturb(x, sign, prec, rnd)
            return cosh, sinh
        # Fix for cancellation when computing sinh
        wp += (-mag)
    # Does exp(-2*x) vanish?
    if mag > 10:
        if 3 * (1 << (mag - 1)) > wp:
            # XXX: rounding
            if tanh:
                return mpf_perturb([fone, fnone][sign], 1 - sign, prec, rnd)
            c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1)
            if sign:
                s = mpf_neg(s)
            return c, s
    # |x| > 1
    if mag > 1:
        wpmod = wp + mag
        offset = exp + wpmod
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        lg2 = ln2_fixed(wpmod)
        n, t = divmod(t, lg2)
        n = int(n)
        t >>= mag
    else:
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        n = 0
    a, b = exp_expneg_basecase(t, wp)
    # TODO: optimize division precision
    cosh = a + (b >> (2 * n))
    sinh = a - (b >> (2 * n))
    if sign:
        sinh = -sinh
    if tanh:
        man = (sinh << wp) // cosh
        return from_man_exp(man, -wp, prec, rnd)
    else:
        cosh = from_man_exp(cosh, n - wp - 1, prec, rnd)
        sinh = from_man_exp(sinh, n - wp - 1, prec, rnd)
        return cosh, sinh
コード例 #16
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    mag = bc+exp
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        e = mpf_e(prec+10+int(1.45*mag))
        return mpf_pow_int(e, (-1)**sign *(man<<exp), prec, rnd)
    if mag < -prec-10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2*wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        use_newton = False
        # put a bound on exp to avoid infinite recursion in exp_newton
        # TODO find a good bound
        if wp > LIM_EXP_SERIES2 and exp < 1000:
            if mag > 0:
                use_newton = True
            elif mag <= 0 and -mag <= ns_exp[-1]:
                i = bisect(ns_exp, -mag-1)
                if i < len(ns_exp):
                    wp0 = precs_exp[i]
                    if wp > wp0:
                        use_newton = True

        if not use_newton:
            r = int(0.7 * wp**0.5)
            if mag < 0:
                r = max(1, r + mag)
            wp += r + 20
            t = to_fixed(x, wp)
            if mag > 1:
                lg2 = ln2_fixed(wp)
                n, t = divmod(t, lg2)
            else:
                n = 0
            man = exp_series2(t, wp, r)
        else:
            # if x is very small or very large use
            # exp(x + m) = exp(x) * e**m
            if mag > LIM_MAG:
                wp += mag*10 + 100
                n = int(mag * math.log(2)) + 1
                x = mpf_sub(x, from_int(n, wp), wp)
            elif mag <= 0:
                wp += -mag*10 + 100
                if mag < 0:
                    n = int(-mag * math.log(2)) + 1
                    x = mpf_add(x, from_int(n, wp), wp)
            res = exp_newton(x, wp)
            sign, man, exp, bc = res
            if mag < 0:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_div(res, t, wp)
                sign, man, exp, bc = res
            if mag > LIM_MAG:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_mul(res, t, wp)
                sign, man, exp, bc = res
            return normalize(sign, man, exp, bc, prec, rnd)
    bc = bitcount(man)
    return normalize(0, man, int(-wp+n), bc, prec, rnd)
コード例 #17
0
def mpf_log(x, prec, rnd=round_fast):
    """
    Compute the natural logarithm of the mpf value x. If x is negative,
    ComplexResult is raised.
    """
    sign, man, exp, bc = x
    #------------------------------------------------------------------
    # Handle special values
    if not man:
        if x == fzero: return fninf
        if x == finf: return finf
        if x == fnan: return fnan
    if sign:
        raise ComplexResult("logarithm of a negative number")
    wp = prec + 20
    #------------------------------------------------------------------
    # Handle log(2^n) = log(n)*2.
    # Here we catch the only possible exact value, log(1) = 0
    if man == 1:
        if not exp:
            return fzero
        return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
    mag = exp+bc
    abs_mag = abs(mag)
    #------------------------------------------------------------------
    # Handle x = 1+eps, where log(x) ~ x. We need to check for
    # cancellation when moving to fixed-point math and compensate
    # by increasing the precision. Note that abs_mag in (0, 1) <=>
    # 0.5 < x < 2 and x != 1
    if abs_mag <= 1:
        # Calculate t = x-1 to measure distance from 1 in bits
        tsign = 1-abs_mag
        if tsign:
            tman = (MP_ONE<<bc) - man
        else:
            tman = man - (MP_ONE<<(bc-1))
        tbc = bitcount(tman)
        cancellation = bc - tbc
        if cancellation > wp:
            t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n')
            return mpf_perturb(t, tsign, prec, rnd)
        else:
            wp += cancellation
        # TODO: if close enough to 1, we could use Taylor series
        # even in the AGM precision range, since the Taylor series
        # converges rapidly
    #------------------------------------------------------------------
    # Another special case:
    # n*log(2) is a good enough approximation
    if abs_mag > 10000:
        if bitcount(abs_mag) > wp:
            return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
    #------------------------------------------------------------------
    # General case.
    # Perform argument reduction using log(x) = log(x*2^n) - n*log(2):
    # If we are in the Taylor precision range, choose magnitude 0 or 1.
    # If we are in the AGM precision range, choose magnitude -m for
    # some large m; benchmarking on one machine showed m = prec/20 to be
    # optimal between 1000 and 100,000 digits.
    if wp <= LOG_TAYLOR_PREC:
        m = log_taylor_cached(lshift(man, wp-bc), wp)
        if mag:
            m += mag*ln2_fixed(wp)
    else:
        optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO
        n = optimal_mag - mag
        x = mpf_shift(x, n)
        wp += (-optimal_mag)
        m = -log_agm(to_fixed(x, wp), wp)
        m -= n*ln2_fixed(wp)
    return from_man_exp(m, -wp, prec, rnd)
コード例 #18
0
ファイル: libelefun.py プロジェクト: vks/sympy
def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0):
    """Simultaneously compute (cosh(x), sinh(x)) for real x"""
    sign, man, exp, bc = x
    if (not man) and exp:
        if tanh:
            if x == finf:
                return fone
            if x == fninf:
                return fnone
            return fnan
        if x == finf:
            return (finf, finf)
        if x == fninf:
            return (finf, fninf)
        return fnan, fnan
    mag = exp + bc
    wp = prec + 14
    if mag < -4:
        # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
        if mag < -wp:
            if tanh:
                return mpf_perturb(x, 1 - sign, prec, rnd)
            cosh = mpf_perturb(fone, 0, prec, rnd)
            sinh = mpf_perturb(x, sign, prec, rnd)
            return cosh, sinh
        # Fix for cancellation when computing sinh
        wp += -mag
    # Does exp(-2*x) vanish?
    if mag > 10:
        if 3 * (1 << (mag - 1)) > wp:
            # XXX: rounding
            if tanh:
                return mpf_perturb([fone, fnone][sign], 1 - sign, prec, rnd)
            c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1)
            if sign:
                s = mpf_neg(s)
            return c, s
    # |x| > 1
    if mag > 1:
        wpmod = wp + mag
        offset = exp + wpmod
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        lg2 = ln2_fixed(wpmod)
        n, t = divmod(t, lg2)
        n = int(n)
        t >>= mag
    else:
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        n = 0
    a, b = exp_expneg_basecase(t, wp)
    # TODO: optimize division precision
    cosh = a + (b >> (2 * n))
    sinh = a - (b >> (2 * n))
    if sign:
        sinh = -sinh
    if tanh:
        man = (sinh << wp) // cosh
        return from_man_exp(man, -wp, prec, rnd)
    else:
        cosh = from_man_exp(cosh, n - wp - 1, prec, rnd)
        sinh = from_man_exp(sinh, n - wp - 1, prec, rnd)
        return cosh, sinh
コード例 #19
0
ファイル: libelefun.py プロジェクト: vks/sympy
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
    """
    which:
    0 -- return cos(x), sin(x)
    1 -- return cos(x)
    2 -- return sin(x)
    3 -- return tan(x)

    if pi=True, compute for pi*x
    """
    sign, man, exp, bc = x
    if not man:
        if exp:
            c, s = fnan, fnan
        else:
            c, s = fone, fzero
        if which == 0:
            return c, s
        if which == 1:
            return c
        if which == 2:
            return s
        if which == 3:
            return s

    mag = bc + exp
    wp = prec + 10

    # Extremely small?
    if mag < 0:
        if mag < -wp:
            if pi:
                x = mpf_mul(x, mpf_pi(wp))
            c = mpf_perturb(fone, 1, prec, rnd)
            s = mpf_perturb(x, 1 - sign, prec, rnd)
            if which == 0:
                return c, s
            if which == 1:
                return c
            if which == 2:
                return s
            if which == 3:
                return mpf_perturb(x, sign, prec, rnd)
    if pi:
        if exp >= -1:
            if exp == -1:
                c = fzero
                s = (fone, fnone)[bool(man & 2) ^ sign]
            elif exp == 0:
                c, s = (fnone, fzero)
            else:
                c, s = (fone, fzero)
            if which == 0:
                return c, s
            if which == 1:
                return c
            if which == 2:
                return s
            if which == 3:
                return mpf_div(s, c, prec, rnd)
        # Subtract nearest half-integer (= mod by pi/2)
        n = ((man >> (-exp - 2)) + 1) >> 1
        man = man - (n << (-exp - 1))
        mag2 = bitcount(man) + exp
        wp = prec + 10 - mag2
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        t = (t * pi_fixed(wp)) >> wp
    else:
        t, n, wp = mod_pi2(man, exp, mag, wp)
    c, s = cos_sin_basecase(t, wp)
    m = n & 3
    if m == 1:
        c, s = -s, c
    elif m == 2:
        c, s = -c, -s
    elif m == 3:
        c, s = s, -c
    if sign:
        s = -s
    if which == 0:
        c = from_man_exp(c, -wp, prec, rnd)
        s = from_man_exp(s, -wp, prec, rnd)
        return c, s
    if which == 1:
        return from_man_exp(c, -wp, prec, rnd)
    if which == 2:
        return from_man_exp(s, -wp, prec, rnd)
    if which == 3:
        return from_rational(s, c, prec, rnd)
コード例 #20
0
ファイル: gammazeta.py プロジェクト: laudehenri/rSymPy
def mpf_zeta(s, prec, rnd=round_fast, alt=0):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            if alt:
                return fhalf
            else:
                return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp, 2) + 2)):
        return mpf_perturb(fone, alt, prec, rnd)
    # Optimize for integer arguments
    elif exp >= 0:
        if alt:
            if s == fone:
                return mpf_ln2(prec, rnd)
            z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd])
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(z, q, prec, rnd)
        else:
            return mpf_zeta_int(to_int(s), prec, rnd)
    # Negative: use the reflection formula
    # Borwein only proves the accuracy bound for x >= 1/2. However, based on
    # tests, the accuracy without reflection is quite good even some distance
    # to the left of 1/2. XXX: verify this.
    if sign:
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(mpf_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10 * wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp + bc)
        pi = mpf_pi(wp + wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a, mpf_mul(b, mpf_mul(c, d, wp), wp), prec, rnd)
    t = MP_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MP_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf * log_int_fixed(k + 1, wp), -2 * wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    if alt:
        return mpf_pos(t, prec, rnd)
    else:
        q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
        return mpf_div(t, q, prec, rnd)
コード例 #21
0
ファイル: libhyper.py プロジェクト: laudehenri/rSymPy
def mpf_ci_si(x, prec, rnd=round_fast, which=2):
    """
    Calculation of Ci(x), Si(x) for real x.

    which = 0 -- returns (Ci(x), -)
    which = 1 -- returns (Si(x), -)
    which = 2 -- returns (Ci(x), Si(x))

    Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
    """
    wp = prec + 20
    sign, man, exp, bc = x
    ci, si = None, None
    if not man:
        if x == fzero:
            return (fninf, fzero)
        if x == fnan:
            return (x, x)
        ci = fzero
        if which != 0:
            if x == finf:
                si = mpf_shift(mpf_pi(prec, rnd), -1)
            if x == fninf:
                si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
        return (ci, si)
    # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
    mag = exp + bc
    if mag < -wp:
        if which != 0:
            si = mpf_perturb(x, 1 - sign, prec, rnd)
        if which != 1:
            y = mpf_euler(wp)
            xabs = mpf_abs(x)
            ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
        return ci, si
    # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
    elif mag > wp:
        if which != 0:
            if sign:
                si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
            else:
                si = mpf_pi(prec, rnd)
            si = mpf_shift(si, -1)
        if which != 1:
            ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
        return ci, si
    else:
        wp += abs(mag)
    # Use an asymptotic series? The smallest value of n!/x^n
    # occurs for n ~ x, where the magnitude is ~ exp(-x).
    asymptotic = mag - 1 > math.log(wp, 2)
    # Case 1: convergent series near 0
    if not asymptotic:
        if which != 0:
            si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
        if which != 1:
            ci = mpf_ci_si_taylor(x, wp, 0)
            ci = mpf_add(ci, mpf_euler(wp), wp)
            ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
        return ci, si
    x = mpf_abs(x)
    # Case 2: asymptotic series for x >> 1
    xf = to_fixed(x, wp)
    xr = (MP_ONE << (2 * wp)) // xf  # 1/x
    s1 = (MP_ONE << wp)
    s2 = xr
    t = xr
    k = 2
    while t:
        t = -t
        t = (t * xr * k) >> wp
        k += 1
        s1 += t
        t = (t * xr * k) >> wp
        k += 1
        s2 += t
    s1 = from_man_exp(s1, -wp)
    s2 = from_man_exp(s2, -wp)
    s1 = mpf_div(s1, x, wp)
    s2 = mpf_div(s2, x, wp)
    cos, sin = cos_sin(x, wp)
    # Ci(x) = sin(x)*s1-cos(x)*s2
    # Si(x) = pi/2-cos(x)*s1-sin(x)*s2
    if which != 0:
        si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
        si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
        if sign:
            si = mpf_neg(si)
        si = mpf_pos(si, prec, rnd)
    if which != 1:
        ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
    return ci, si
コード例 #22
0
def mpf_log(x, prec, rnd=round_fast):
    """
    Compute the natural logarithm of the mpf value x. If x is negative,
    ComplexResult is raised.
    """
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fninf
        if x == finf: return finf
        if x == fnan: return fnan
    if sign:
        raise ComplexResult("logarithm of a negative number")

    # log(2^n)
    if man == 1:
        if not exp:
            return fzero
        return from_man_exp(exp * ln2_fixed(prec + 20), -prec - 20, prec, rnd)

    # Assume 20 bits to be sufficient for cancelling rounding errors
    wp = prec + 20
    mag = bc + exp

    # Already on the standard interval, (0.5, 1)
    if not mag:
        t = rshift(man, bc - wp)
        log2n = 0
        # Watch out for "x = 0.9999"
        # Proceed only if 1-x lost at most 15 bits of accuracy
        res = (MP_ONE << wp) - t
        if not (res >> (wp - 15)):
            # Find out extra precision needed
            delta = mpf_sub(x, fone, 10)
            delta_bits = -(delta[2] + delta[3])
            # O(x^2) term vanishes relatively
            if delta_bits > wp + 10:
                xm1 = mpf_sub(x, fone, prec, rnd)
                return mpf_perturb(xm1, 1, prec, rnd)
            else:
                wp += delta_bits
                t = rshift(man, bc - wp)

    # Already on the standard interval, (1, 2)
    elif mag == 1:
        t = rshift(man, bc - wp - 1)
        log2n = 0
        # Watch out for "x = 1.0001"
        # Similar to above; note that we flip signs
        # to obtain a positive residual, ensuring that
        # the following shift rounds down
        res = t - (MP_ONE << wp)
        if not (res >> (wp - 15)):
            # Find out extra precision needed
            delta = mpf_sub(x, fone, 10)
            delta_bits = -(delta[2] + delta[3])
            # O(x^2) term vanishes relatively
            if delta_bits > wp + 10:
                xm1 = mpf_sub(x, fone, prec, rnd)
                return mpf_perturb(xm1, 1, prec, rnd)
            else:
                wp += delta_bits
                t = rshift(man, bc - wp - 1)

    # Rescale
    else:
        # Estimated precision needed for n*log(2) to
        # be accurate relatively
        wp += int(math.log(1 + abs(mag), 2))
        log2n = mag * ln2_fixed(wp)
        # Rescaled argument as a fixed-point number
        t = rshift(man, bc - wp)

    # Use the faster method
    if wp < LOG_TAYLOR_PREC:
        a = log_taylor(t, wp)
    else:
        a = log_newton(t, wp)

    return from_man_exp(a + log2n, -wp, prec, rnd)
コード例 #23
0
ファイル: libhyper.py プロジェクト: Aang/sympy
def mpf_ci_si(x, prec, rnd=round_fast, which=2):
    """
    Calculation of Ci(x), Si(x) for real x.

    which = 0 -- returns (Ci(x), -)
    which = 1 -- returns (Si(x), -)
    which = 2 -- returns (Ci(x), Si(x))

    Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
    """
    wp = prec + 20
    sign, man, exp, bc = x
    ci, si = None, None
    if not man:
        if x == fzero:
            return (fninf, fzero)
        if x == fnan:
            return (x, x)
        ci = fzero
        if which != 0:
            if x == finf:
                si = mpf_shift(mpf_pi(prec, rnd), -1)
            if x == fninf:
                si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
        return (ci, si)
    # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
    mag = exp+bc
    if mag < -wp:
        if which != 0:
            si = mpf_perturb(x, 1-sign, prec, rnd)
        if which != 1:
            y = mpf_euler(wp)
            xabs = mpf_abs(x)
            ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
        return ci, si
    # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
    elif mag > wp:
        if which != 0:
            if sign:
                si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
            else:
                si = mpf_pi(prec, rnd)
            si = mpf_shift(si, -1)
        if which != 1:
            ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
        return ci, si
    else:
        wp += abs(mag)
    # Use an asymptotic series? The smallest value of n!/x^n
    # occurs for n ~ x, where the magnitude is ~ exp(-x).
    asymptotic = mag-1 > math.log(wp, 2)
    # Case 1: convergent series near 0
    if not asymptotic:
        if which != 0:
            si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
        if which != 1:
            ci = mpf_ci_si_taylor(x, wp, 0)
            ci = mpf_add(ci, mpf_euler(wp), wp)
            ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
        return ci, si
    x = mpf_abs(x)
    # Case 2: asymptotic series for x >> 1
    xf = to_fixed(x, wp)
    xr = (MPZ_ONE<<(2*wp)) // xf   # 1/x
    s1 = (MPZ_ONE << wp)
    s2 = xr
    t = xr
    k = 2
    while t:
        t = -t
        t = (t*xr*k)>>wp
        k += 1
        s1 += t
        t = (t*xr*k)>>wp
        k += 1
        s2 += t
    s1 = from_man_exp(s1, -wp)
    s2 = from_man_exp(s2, -wp)
    s1 = mpf_div(s1, x, wp)
    s2 = mpf_div(s2, x, wp)
    cos, sin = mpf_cos_sin(x, wp)
    # Ci(x) = sin(x)*s1-cos(x)*s2
    # Si(x) = pi/2-cos(x)*s1-sin(x)*s2
    if which != 0:
        si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
        si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
        if sign:
            si = mpf_neg(si)
        si = mpf_pos(si, prec, rnd)
    if which != 1:
        ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
    return ci, si
コード例 #24
0
ファイル: libelefun.py プロジェクト: jcockayne/sympy-rkern
def mpf_log(x, prec, rnd=round_fast):
    """
    Compute the natural logarithm of the mpf value x. If x is negative,
    ComplexResult is raised.
    """
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fninf
        if x == finf: return finf
        if x == fnan: return fnan
    if sign:
        raise ComplexResult("logarithm of a negative number")

    # log(2^n)
    if man == 1:
        if not exp:
            return fzero
        return from_man_exp(exp*ln2_fixed(prec+20), -prec-20, prec, rnd)

    # Assume 20 bits to be sufficient for cancelling rounding errors
    wp = prec + 20
    mag = bc + exp

    # Already on the standard interval, (0.5, 1)
    if not mag:
        t = rshift(man, bc-wp)
        log2n = 0
        # Watch out for "x = 0.9999"
        # Proceed only if 1-x lost at most 15 bits of accuracy
        res = (MP_ONE << wp) - t
        if not (res >> (wp - 15)):
            # Find out extra precision needed
            delta = mpf_sub(x, fone, 10)
            delta_bits = -(delta[2] + delta[3])
            # O(x^2) term vanishes relatively
            if delta_bits > wp + 10:
                xm1 = mpf_sub(x, fone, prec, rnd)
                return mpf_perturb(xm1, 1, prec, rnd)
            else:
                wp += delta_bits
                t = rshift(man, bc-wp)

    # Already on the standard interval, (1, 2)
    elif mag == 1:
        t = rshift(man, bc-wp-1)
        log2n = 0
        # Watch out for "x = 1.0001"
        # Similar to above; note that we flip signs
        # to obtain a positive residual, ensuring that
        # the following shift rounds down
        res = t - (MP_ONE << wp)
        if not (res >> (wp - 15)):
            # Find out extra precision needed
            delta = mpf_sub(x, fone, 10)
            delta_bits = -(delta[2] + delta[3])
            # O(x^2) term vanishes relatively
            if delta_bits > wp + 10:
                xm1 = mpf_sub(x, fone, prec, rnd)
                return mpf_perturb(xm1, 1, prec, rnd)
            else:
                wp += delta_bits
                t = rshift(man, bc-wp-1)

    # Rescale
    else:
        # Estimated precision needed for n*log(2) to
        # be accurate relatively
        wp += int(math.log(1+abs(mag),2))
        log2n = mag * ln2_fixed(wp)
        # Rescaled argument as a fixed-point number
        t = rshift(man, bc-wp)

    # Use the faster method
    if wp < LOG_TAYLOR_PREC:
        a = log_taylor(t, wp)
    else:
        a = log_newton(t, wp)

    return from_man_exp(a + log2n, -wp, prec, rnd)
コード例 #25
0
ファイル: libelefun.py プロジェクト: jcockayne/sympy-rkern
def calc_cos_sin(which, y, swaps, prec, cos_rnd, sin_rnd):
    """
    Simultaneous computation of cos and sin (internal function).
    """
    y, wp = y
    swap_cos_sin, cos_sign, sin_sign = swaps

    if swap_cos_sin:
        which_compute = -which
    else:
        which_compute = which

    # XXX: assumes no swaps
    if not y:
        return fone, fzero

    # Tiny nonzero argument
    if wp > prec*2 + 30:
        y = from_man_exp(y, -wp)

        if swap_cos_sin:
            cos_rnd, sin_rnd = sin_rnd, cos_rnd
            cos_sign, sin_sign = sin_sign, cos_sign

        if cos_sign: cos = mpf_perturb(fnone, 0, prec, cos_rnd)
        else:        cos = mpf_perturb(fone, 1, prec, cos_rnd)
        if sin_sign: sin = mpf_perturb(mpf_neg(y), 0, prec, sin_rnd)
        else:        sin = mpf_perturb(y, 1, prec, sin_rnd)

        if swap_cos_sin:
            cos, sin = sin, cos
        return cos, sin

    # Use standard Taylor series
    if prec < 600:
        if which_compute == 0:
            sin = sin_taylor(y, wp)
            # only need to evaluate one of the series
            cos = sqrt_fixed((1<<wp) - ((sin*sin)>>wp), wp)
        elif which_compute == 1:
            sin = 0
            cos = cos_taylor(y, wp)
        elif which_compute == -1:
            sin = sin_taylor(y, wp)
            cos = 0
    # Use exp(i*x) with Brent's trick
    else:
        r = int(0.137 * prec**0.579)
        ep = r+20
        cos, sin = expi_series(y<<ep, wp+ep, r)
        cos >>= ep
        sin >>= ep

    if swap_cos_sin:
        cos, sin = sin, cos

    if cos_rnd is not round_nearest:
        # Round and set correct signs
        # XXX: this logic needs a second look
        ONE = MP_ONE << wp
        if cos_sign:
            cos += (-1)**(cos_rnd in (round_ceiling, round_down))
            cos = min(ONE, cos)
        else:
            cos += (-1)**(cos_rnd in (round_ceiling, round_up))
            cos = min(ONE, cos)
        if sin_sign:
            sin += (-1)**(sin_rnd in (round_ceiling, round_down))
            sin = min(ONE, sin)
        else:
            sin += (-1)**(sin_rnd in (round_ceiling, round_up))
            sin = min(ONE, sin)

    if which != -1:
        cos = normalize(cos_sign, cos, -wp, bitcount(cos), prec, cos_rnd)
    if which != 1:
        sin = normalize(sin_sign, sin, -wp, bitcount(sin), prec, sin_rnd)

    return cos, sin
コード例 #26
0
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
    """
    which:
    0 -- return cos(x), sin(x)
    1 -- return cos(x)
    2 -- return sin(x)
    3 -- return tan(x)

    if pi=True, compute for pi*x
    """
    sign, man, exp, bc = x
    if not man:
        if exp:
            c, s = fnan, fnan
        else:
            c, s = fone, fzero
        if which == 0: return c, s
        if which == 1: return c
        if which == 2: return s
        if which == 3: return s

    mag = bc + exp
    wp = prec + 10

    # Extremely small?
    if mag < 0:
        if mag < -wp:
            if pi:
                x = mpf_mul(x, mpf_pi(wp))
            c = mpf_perturb(fone, 1, prec, rnd)
            s = mpf_perturb(x, 1 - sign, prec, rnd)
            if which == 0: return c, s
            if which == 1: return c
            if which == 2: return s
            if which == 3: return mpf_perturb(x, sign, prec, rnd)
    if pi:
        if exp >= -1:
            if exp == -1:
                c = fzero
                s = (fone, fnone)[bool(man & 2) ^ sign]
            elif exp == 0:
                c, s = (fnone, fzero)
            else:
                c, s = (fone, fzero)
            if which == 0: return c, s
            if which == 1: return c
            if which == 2: return s
            if which == 3: return mpf_div(s, c, prec, rnd)
        # Subtract nearest half-integer (= mod by pi/2)
        n = ((man >> (-exp - 2)) + 1) >> 1
        man = man - (n << (-exp - 1))
        mag2 = bitcount(man) + exp
        wp = prec + 10 - mag2
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        t = (t * pi_fixed(wp)) >> wp
    else:
        t, n, wp = mod_pi2(man, exp, mag, wp)
    c, s = cos_sin_basecase(t, wp)
    m = n & 3
    if m == 1: c, s = -s, c
    elif m == 2: c, s = -c, -s
    elif m == 3: c, s = s, -c
    if sign:
        s = -s
    if which == 0:
        c = from_man_exp(c, -wp, prec, rnd)
        s = from_man_exp(s, -wp, prec, rnd)
        return c, s
    if which == 1:
        return from_man_exp(c, -wp, prec, rnd)
    if which == 2:
        return from_man_exp(s, -wp, prec, rnd)
    if which == 3:
        return from_rational(s, c, prec, rnd)
コード例 #27
0
def mpf_zeta(s, prec, rnd=round_fast, alt=0):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            if alt:
                return fhalf
            else:
                return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp,2) + 2)):
        return mpf_perturb(fone, alt, prec, rnd)
    # Optimize for integer arguments
    elif exp >= 0:
        if alt:
            if s == fone:
                return mpf_ln2(prec, rnd)
            z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd])
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(z, q, prec, rnd)
        else:
            return mpf_zeta_int(to_int(s), prec, rnd)
    # Negative: use the reflection formula
    # Borwein only proves the accuracy bound for x >= 1/2. However, based on
    # tests, the accuracy without reflection is quite good even some distance
    # to the left of 1/2. XXX: verify this.
    if sign:
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(mpf_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10*wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp+bc)
        pi = mpf_pi(wp+wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd)

    # Near pole
    r = mpf_sub(fone, s, wp)
    asign, aman, aexp, abc = mpf_abs(r)
    pole_dist = -2*(aexp+abc)
    if pole_dist > wp:
        if alt:
            return mpf_ln2(prec, rnd)
        else:
            q = mpf_neg(mpf_div(fone, r, wp))
            return mpf_add(q, mpf_euler(wp), prec, rnd)
    else:
        wp += max(0, pole_dist)

    t = MPZ_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf*log_int_fixed(k+1, wp), -2*wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    if alt:
        return mpf_pos(t, prec, rnd)
    else:
        q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
        return mpf_div(t, q, prec, rnd)
コード例 #28
0
def calc_cos_sin(which, y, swaps, prec, cos_rnd, sin_rnd):
    """
    Simultaneous computation of cos and sin (internal function).
    """
    y, wp = y
    swap_cos_sin, cos_sign, sin_sign = swaps

    if swap_cos_sin:
        which_compute = -which
    else:
        which_compute = which

    # XXX: assumes no swaps
    if not y:
        return fone, fzero

    # Tiny nonzero argument
    if wp > prec*2 + 30:
        y = from_man_exp(y, -wp)

        if swap_cos_sin:
            cos_rnd, sin_rnd = sin_rnd, cos_rnd
            cos_sign, sin_sign = sin_sign, cos_sign

        if cos_sign: cos = mpf_perturb(fnone, 0, prec, cos_rnd)
        else:        cos = mpf_perturb(fone, 1, prec, cos_rnd)
        if sin_sign: sin = mpf_perturb(mpf_neg(y), 0, prec, sin_rnd)
        else:        sin = mpf_perturb(y, 1, prec, sin_rnd)

        if swap_cos_sin:
            cos, sin = sin, cos
        return cos, sin

    # Use standard Taylor series
    if prec < 600:
        if which_compute == 0:
            sin = sin_taylor(y, wp)
            # only need to evaluate one of the series
            cos = isqrt_fast((MP_ONE<<(2*wp)) - sin*sin)
        elif which_compute == 1:
            sin = 0
            cos = cos_taylor(y, wp)
        elif which_compute == -1:
            sin = sin_taylor(y, wp)
            cos = 0
    # Use exp(i*x) with Brent's trick
    else:
        r = int(0.137 * prec**0.579)
        ep = r+20
        cos, sin = expi_series(y<<ep, wp+ep, r)
        cos >>= ep
        sin >>= ep

    if swap_cos_sin:
        cos, sin = sin, cos

    if cos_rnd is not round_nearest:
        # Round and set correct signs
        # XXX: this logic needs a second look
        ONE = MP_ONE << wp
        if cos_sign:
            cos += (-1)**(cos_rnd in (round_ceiling, round_down))
            cos = min(ONE, cos)
        else:
            cos += (-1)**(cos_rnd in (round_ceiling, round_up))
            cos = min(ONE, cos)
        if sin_sign:
            sin += (-1)**(sin_rnd in (round_ceiling, round_down))
            sin = min(ONE, sin)
        else:
            sin += (-1)**(sin_rnd in (round_ceiling, round_up))
            sin = min(ONE, sin)

    if which != -1:
        cos = normalize(cos_sign, cos, -wp, bitcount(cos), prec, cos_rnd)
    if which != 1:
        sin = normalize(sin_sign, sin, -wp, bitcount(sin), prec, sin_rnd)

    return cos, sin