コード例 #1
0
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    set_logging()
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    if os.path.exists(opt.features):
        shutil.rmtree(opt.features)  # delete features output folder
    if os.path.exists(opt.crops):
        shutil.rmtree(opt.crops)  # delete output folder with object crops
    os.makedirs(out)  # make new output folder
    os.makedirs(opt.features)  # make new output folder
    os.makedirs(opt.crops)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # log file dictionary: save frames when track_id object is detected
    log_frames = {"FPS": dataset.cap.get(cv2.CAP_PROP_FPS)}
    print("FRAMES PER SECOND ", dataset.cap.get(cv2.CAP_PROP_FPS))

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Find index corresponding to a person
    idx_person = names.index("person")

    # Deep SORT: initialize the tracker
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Deep SORT: person class only
                idxs_ppl = (
                    det[:, -1] == idx_person
                ).nonzero(as_tuple=False).squeeze(
                    dim=1)  # 1. List of indices with 'person' class detections
                dets_ppl = det[idxs_ppl, :
                               -1]  # 2. Torch.tensor with 'person' detections
                print('\n {} people were detected!'.format(len(idxs_ppl)))

                # Deep SORT: convert data into a proper format
                xywhs = xyxy2xywh(dets_ppl[:, :-1]).to("cpu")
                confs = dets_ppl[:, 4].to("cpu")

                # Deep SORT: feed detections to the tracker
                if len(dets_ppl) != 0:
                    trackers, features = deepsort.update(xywhs, confs, im0)
                    for d in trackers:
                        ##### DEEP SORT feature object saver ####
                        track_id = d[4]
                        fname_features = opt.features + '/ID_{}'.format(
                            track_id)
                        fname_crops = opt.crops + '/ID_{}'.format(track_id)
                        if not os.path.exists(fname_features):
                            os.mkdir(fname_features)
                            os.mkdir(fname_crops)
                            log_frames['ID_' + str(track_id)] = []

                        # choose format to save feature arrays on your machine:
                        # https://machinelearningmastery.com/how-to-save-a-numpy-array-to-file-for-machine-learning/
                        save_format = 'csv'
                        filename = fname_features + "/feature_frame_" + str(
                            dataset.frame)
                        if save_format == 'csv':
                            savetxt(filename + '.csv',
                                    features[track_id],
                                    delimiter=',')
                            #data = numpy.loadtxt('data.csv', delimiter=',')
                        elif save_format == 'npy':
                            save(filename + '.npy', features[track_id])
                            #data = numpy.load('data.npy')
                        elif save_format == 'npz':
                            savez_compressed(filename + '.npz',
                                             features[track_id])
                            # dict_data = load('data.npz'); data = dict_data['arr_0']
                        # update log file with track_id detection history
                        log_frames['ID_' + str(track_id)].append(dataset.frame)
                        # save croped image
                        im_crop = im0[d[1]:d[3], d[0]:d[2], :]
                        cv2.imwrite(filename=fname_crops + "/image_crop_" +
                                    str(dataset.frame) + '.jpg',
                                    img=im_crop)
                        plot_one_box(d[:4],
                                     im0,
                                     label='ID' + str(int(d[4])),
                                     color=colors[1],
                                     line_thickness=1)

            # DEEP SORT: save updated log file
            log_format = 'txt'
            if log_format == 'txt':
                f_log = open(opt.features + "/log_detection.txt", "w")
                f_log.write(str(log_frames))
            elif log_format == 'pkl':
                f_log = open(opt.features + "/log_detection.pkl", "wb")
                pickle.dump(log_frames, f_log)
            f_log.close()
            ###################################

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)
    if save_txt or save_img:
        print('Results saved to %s' % Path(out))
        if platform.system() == 'Darwin' and not opt.update:  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
コード例 #2
0
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    set_logging()
    device = select_device(opt.device)
    folder_main = out.split('/')[0]
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    folder_features = folder_main + '/features'
    if os.path.exists(folder_features):
        shutil.rmtree(folder_features)  # delete features output folder
    folder_crops = folder_main + '/image_crops'
    if os.path.exists(folder_crops):
        shutil.rmtree(folder_crops)  # delete output folder with object crops
    os.makedirs(out)  # make new output folder
    os.makedirs(folder_features)  # make new output folder
    os.makedirs(folder_crops)  # make new output folder

    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # frames per second
    fps = dataset.cap.get(cv2.CAP_PROP_FPS)
    critical_time_frames = opt.time * fps

    # COUNTER: initialization
    counter = VoteCounter(critical_time_frames, fps)
    print('CRITICAL TIME IS ', opt.time, 'sec, or ', counter.critical_time,
          ' frames')

    # Find index corresponding to a person
    idx_person = names.index("person")

    # Deep SORT: initialize the tracker
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # AlphaPose: initialization
    args_p = update_config(opt.config_alphapose)
    cfg_p = update_config(args_p.ALPHAPOSE.cfg)

    args_p.ALPHAPOSE.tracking = args_p.ALPHAPOSE.pose_track or args_p.ALPHAPOSE.pose_flow

    demo = SingleImageAlphaPose(args_p.ALPHAPOSE, cfg_p, device)

    output_pose = opt.output.split('/')[0] + '/pose'
    if not os.path.exists(output_pose):
        os.mkdir(output_pose)

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # COUNTER: compute urn centoid (1st frame only) and plot a bounding box around it
        if dataset.frame == 1:
            counter.read_urn_coordinates(opt.urn, im0s, opt.radius)
        counter.plot_urn_bbox(im0s)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Deep SORT: person class only
                idxs_ppl = (
                    det[:, -1] == idx_person
                ).nonzero(as_tuple=False).squeeze(
                    dim=1)  # 1. List of indices with 'person' class detections
                dets_ppl = det[idxs_ppl, :
                               -1]  # 2. Torch.tensor with 'person' detections
                print('\n {} people were detected!'.format(len(idxs_ppl)))

                # Deep SORT: convert data into a proper format
                xywhs = xyxy2xywh(dets_ppl[:, :-1]).to("cpu")
                confs = dets_ppl[:, 4].to("cpu")

                # Deep SORT: feed detections to the tracker
                if len(dets_ppl) != 0:
                    trackers, features = deepsort.update(xywhs, confs, im0)
                    # tracks inside a critical sphere
                    trackers_inside = []
                    for i, d in enumerate(trackers):
                        plot_one_box(d[:-1],
                                     im0,
                                     label='ID' + str(int(d[-1])),
                                     color=colors[1],
                                     line_thickness=1)

                        # COUNTER
                        d_include = counter.centroid_distance(
                            d, im0, colors[1], dataset.frame)
                        if d_include:
                            trackers_inside.append(d)

                    # ALPHAPOSE: show skeletons for bounding boxes inside the critical sphere
                    if len(trackers_inside) > 0:
                        pose = demo.process('frame_' + str(dataset.frame), im0,
                                            trackers_inside)
                        im0 = demo.vis(im0, pose)
                        demo.writeJson([pose],
                                       output_pose,
                                       form=args_p.ALPHAPOSE.format,
                                       for_eval=args_p.ALPHAPOSE.eval)

                        counter.save_features_and_crops(
                            im0, dataset.frame, trackers_inside, features,
                            folder_main)

            cv2.putText(im0, 'Voted ' + str(len(counter.voters_count)),
                        (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255),
                        2)

            print('NUM VOTERS', len(counter.voters))
            print(list(counter.voters.keys()))

            # COUNTER
            if len(counter.voters) > 0:
                counter.save_voter_trajectory(dataset.frame, folder_main)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % Path(out))
        if platform.system() == 'Darwin' and not opt.update:  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))