コード例 #1
0
fig1, ax11, cc11 = graph.color_plot(xgrid,
                                    ygrid,
                                    ugrid,
                                    fignum=1,
                                    subplot=121,
                                    figsize=(16, 8))
fig1, ax12, cc12 = graph.color_plot(xgrid,
                                    ygrid,
                                    vgrid,
                                    fignum=1,
                                    subplot=122,
                                    figsize=(16, 8))
fig2, ax2, cc2 = graph.color_plot(xgrid, ygrid, omega, fignum=2)
# print np.nansum(omega), gamma / np.nansum(omega)

graph.add_colorbar(cc11, ax=ax11, label=r'$U_x$ (px/frame)')
graph.add_colorbar(cc12, ax=ax12, label=r'$U_y$ (px/frame)')
graph.add_colorbar(cc2, ax=ax2, label=r'$\omega_z$ (1/frame)')

graph.labelaxes(ax11, r'$X$', r'$Y$')
graph.labelaxes(ax12, r'$X$', r'$Y$')
graph.labelaxes(ax2, r'$X$', r'$Y$')
fig1.tight_layout()
fig2.tight_layout()

fig3, ax31 = graph.pdf(ugrid,
                       nbins=200,
                       fignum=3,
                       subplot=121,
                       figsize=(16, 8))
fig3, ax32 = graph.pdf(vgrid,
コード例 #2
0
ファイル: sample.py プロジェクト: tmatsuzawa/turbulence
nrows_sub, ncolumns_sub = 16, 16
xx_coarse = fa.coarse_grain_2darr(xx, nrows_sub, ncolumns_sub)
yy_coarse = fa.coarse_grain_2darr(yy, nrows_sub, ncolumns_sub)
ux0_coarse = fa.coarse_grain_2darr(ux0, nrows_sub, ncolumns_sub)
uy0_coarse = fa.coarse_grain_2darr(uy0, nrows_sub, ncolumns_sub)
uz0_coarse = fa.coarse_grain_2darr(uz0, nrows_sub, ncolumns_sub)
#energy_coarse = (ux0_coarse ** 2 + uy0_coarse ** 2 + uz0_coarse ** 2) / 2
energy_coarse = np.sqrt((ux0_coarse**2 + uy0_coarse**2 + uz0_coarse**2))

#graph.color_plot(xx_coarse, yy_coarse, ux0_coarse, cmap='RdBu', vmin=-2, vmax=2, fignum=1)
print xx_coarse.shape
# # graph.color_plot(xx, yy, ux0, cmap='RdBu', vmin=-2, vmax=2, fignum=1)
fig = plt.figure(num=1, figsize=(18, 18))
ax = fig.add_subplot(111)
cc = ax.pcolormesh(xx_coarse,
                   yy_coarse,
                   uy0_coarse,
                   cmap='RdBu',
                   vmin=-2,
                   vmax=2)
ax.quiver(xx_coarse, yy_coarse, ux0_coarse, uy0_coarse)
# ax.invert_yaxis()

ax.set_aspect('equal')
# set edge color to face color
cc.set_edgecolor('face')

graph.add_colorbar(cc, ax=ax)

plt.show()
コード例 #3
0
kernel3 = np.ones_like(x)
kernel3[xmin:xmax, ymin:ymax] = 0.7

xc, yc = 750., 520.,
sigma = 150.
kernel4 = 1 - A * np.exp(- (0.1*(x-xc)**2+(y-yc)**2) / (2. * sigma**2))



e_mod = np.empty_like(e)
for i in range(e.shape[2]):
    print data['x'].shape
    fig, ax, cc = graph.color_plot(data['y'][..., i], data['x'][..., i], e[..., i] / kernel[i], vmin=0, vmax=1*10**4)
    ax.invert_yaxis()
    graph.add_colorbar(cc, option='scientific')
    graph.title(ax, 'z=%.3f' % data['z'][0, 0, i])
    graph.save(dir + '/mod_deltadx_%s_-30/zm%03d' % (str(deltafx).replace('.', 'p'), i), ext='png')
    plt.close('all')

    if i < 100:
        fig, ax, cc = graph.color_plot(data['y'][..., i], data['x'][..., i], e[..., i] / kernel[i] * kernel4, vmin=0,
                                       vmax=10 * 10 ** 3)
        e_mod[..., i] = e[..., i] / kernel[i] * kernel4
    else:
        fig, ax, cc = graph.color_plot(data['y'][..., i], data['x'][..., i], e[..., i] / kernel[i], vmin=0,
                                       vmax=10 * 10 ** 3)
        e_mod[..., i] = e[..., i] / kernel[i]

    ax.scatter(yc, xc)
    ax.invert_yaxis()
コード例 #4
0
                                                        cmap=cmap,
                                                        fignum=1,
                                                        subplot=236)

                    # Plotting stuff
                    axes = [ax11, ax12, ax13, ax14, ax15, ax16]
                    ccs = [cc11, cc12, cc13, cc14, cc15, cc16]
                    cblabels = [
                        r'$U_x$', r'$U_x$', r'$U_x$', r'$U_y$', r'$U_y$',
                        r'$U_y$'
                    ]
                    xlabel, ylabel = r'$X$ (px)', r'$Y$ (px)'
                    title = r'W=%dpx, $v$=%.1f px/frame (PIVLab, Original, Diff.)' % (
                        iw, mag)
                    for ax, cc, cblabel in zip(axes, ccs, cblabels):
                        graph.add_colorbar(cc, ax=ax, label=cblabel)
                        graph.labelaxes(ax, xlabel, ylabel)
                        graph.setaxes(ax, 0, xx0.shape[1], 0, xx0.shape[0])
                    graph.suptitle(title, fignum=1)
                    fig1.tight_layout()

                    pivdata.close()
                    fdata.close()

                    figname = '/pivlab_fakedata_comp_W%d_v%spxframe_multiple_passes' % (
                        iw, mag_str_2)
                    graph.save(resultdir + figname, ext='png')
                    plt.close()
                    break
        elif args.mode == 'gradient':
            max = fs.get_float_from_str(pivdatum_loc, 'max',
コード例 #5
0
        uy = filters.gaussian_filter(uy, [0.5, 0.5, 0])
        uz = filters.gaussian_filter(uz, [0.5, 0.5, 0])

        x, y, z = x / data_spacing, y / data_spacing, z / data_spacing
        e = (ux**2 + uy**2) / 2.

        for i in range(x.shape[2]):
            print i, np.min(z[..., i]), np.max(z[..., i]), np.mean(z[..., i])
            fig, ax, cc = graph.color_plot(x[..., i],
                                           y[..., i],
                                           e[..., i],
                                           cmap='plasma',
                                           vmin=vmin,
                                           vmax=vmax)
            graph.add_colorbar(
                cc,
                label=r'$\bar{E}_{2D}=\frac{1}{2}(\bar{U_x}^2)$',
                option='scientific')
            graph.labelaxes(ax, 'X (px)', 'Y (px)')
            graph.title(ax, '<z>=%.2f px' % np.mean(z[..., i]))
            fig.tight_layout()
            filename = '/time_avg_energy_raw_%s/zm%03d' % (args.mode, i)
            graph.save(args.dir + filename,
                       ext='png',
                       close=True,
                       verbose=True)

        print x.shape, ux.shape
        xmin, xmax, ymin, ymax, zmin, zmax = np.min(x), np.max(x), np.min(
            y), np.max(y), np.min(z), np.max(z)

        points = zip(np.ravel(x), np.ravel(y),
コード例 #6
0
    # for ax in axes:
    #     graph.labelaxes(ax, r'$\Delta t$ (a.u.)', r'$U_x^{true}$ (px/unit time)')
    #     ax.set_facecolor('k')
    # fig8.tight_layout()

    fig8, ax81, cc81 = graph.color_plot(grid_deltat,
                                        grid_ux,
                                        chi_data,
                                        cmap=cmap2,
                                        aspect=None,
                                        fignum=8,
                                        subplot=121,
                                        vmin=-100,
                                        vmax=100)
    # graph.add_colorbar(cc81, label=r'$\chi / |U_x^{true}|$', aspect=None)
    graph.add_colorbar(cc81, label=r'$\chi$ (px/unit time)', aspect=None)

    fig8, ax82, cc82 = graph.color_plot(grid_deltat,
                                        grid_ux,
                                        gamma_data,
                                        cmap='plasma',
                                        aspect=None,
                                        fignum=8,
                                        subplot=122,
                                        vmin=0.0,
                                        vmax=150,
                                        figsize=(20, 10))
    # graph.add_colorbar(cc82, label=r'$\gamma / |U_x^{true}|$', aspect=None)
    graph.add_colorbar(cc82, label=r'$\gamma$ (px/unit time)', aspect=None)

    axes = [ax81, ax82]
コード例 #7
0
# Coarse-grain data
nrows_sub, ncolumns_sub = args.iw, args.iw # number of pixels to average over
xx_coarse = fa.coarse_grain_2darr_overwrap(xx, nrows_sub, ncolumns_sub, overwrap=0.5)
yy_coarse = fa.coarse_grain_2darr_overwrap(yy, nrows_sub, ncolumns_sub, overwrap=0.5)
ux0_coarse = fa.coarse_grain_2darr_overwrap(ux0, nrows_sub, ncolumns_sub, overwrap=0.5)
uy0_coarse = fa.coarse_grain_2darr_overwrap(uy0, nrows_sub, ncolumns_sub, overwrap=0.5)

fig1, ax11, cc11 = graph.color_plot(xx, yy, ux0, cmap=cmap, vmin=-2, vmax=2,  fignum=1, subplot=221)
fig1, ax12, cc12 = graph.color_plot(xx_coarse, yy_coarse, ux0_coarse, cmap=cmap, vmin=-2, vmax=2,  fignum=1, subplot=222)
fig1, ax13, cc13 = graph.color_plot(xx, yy, uy0, cmap=cmap, vmin=-2, vmax=2,  fignum=1, subplot=223)
fig1, ax14, cc14 = graph.color_plot(xx_coarse, yy_coarse, uy0_coarse, cmap=cmap, vmin=-2, vmax=2,  fignum=1, subplot=224, figsize=(18, 14))
axes1 = [ax11, ax12, ax13, ax14]
ccs1 = [cc11, cc12, cc13, cc14]
titles1 = ['Original $U_x$', 'Coarse-grained $U_x$', 'Original $U_y$', 'Coarse-grained $U_y$']
for ax, cc, title in zip(axes1, ccs1, titles1):
    graph.add_colorbar(cc, ax=ax, ticklabelsize=10)
    graph.title(ax, title)
    # graph.setaxes(ax, 0, 2*np.pi, 0, 2*np.pi)
    graph.labelaxes(ax, '$X$ (a.u.)', '$Y$ (a.u.)')
    if cmap == 'RdBu':
        ax.set_facecolor('k')
graph.suptitle('Fake data')
filename = 'fake_data_vel_fields_%s' %cmap
graph.save(resultdir + filename)
plt.close()


################
# PIV-processed data
################
# data architecture