コード例 #1
0
def draw_trajectory(data_dict, show=True):
    fig3, ax31 = graph.set_fig(fignum=3, subplot=111, figsize=(16, 10))
    for domain_num in range(1, 5):
        # these are lists of core positions
        cxmax = data_dict["domain{0}".format(domain_num)]["cxmaxlist"]
        cymax = data_dict["domain{0}".format(domain_num)]["cymaxlist"]
        cxmin = data_dict["domain{0}".format(domain_num)]["cxminlist"]
        cymin = data_dict["domain{0}".format(domain_num)]["cyminlist"]

        core_positions = [[cxmax, cymax], [cxmin, cymin]]

        # For plot
        marker = ['v', '^', 's', 'o']  # makers corresponding to domains
        fillstyle = ['full',
                     'none']  # Positive core: fill, Negative core: no fill
        colors = graph.get_first_n_colors_from_color_cycle(4)

        for j, core_position in enumerate(core_positions):
            print core_position
            cx, cy = core_position[0], core_position[1]
            ax31.plot(cx,
                      cy,
                      color=colors[domain_num - 1],
                      marker=marker[domain_num - 1],
                      alpha=0.7,
                      fillstyle=fillstyle[j])
            graph.setaxes(ax31, 0, imsize[1] * scale, 0, imsize[0] * scale)
            graph.labelaxes(ax31, 'x [mm]', 'y [mm]')
            ax31.invert_yaxis()
        if show:
            graph.show()
コード例 #2
0
        #time_csv = [x + 0.207 for x in time_csv]
        vel_csv = [x / 6.2 * 5.3 for x in vel_csv]
        #vel_csv = np.roll(vel_csv, int(len(vel_csv) * 0.237))
        # Position Plot
        fig1, ax1 = graph.plot(time_csv, commanded_pos_csv, label='Commanded position (software outputs)', fignum=1, subplot=211, figsize=(12, 8))
        fig1, ax1 = graph.plot(time_csv, pos_csv, label='Actual position (software outputs)', fignum=1, subplot=211, figsize=(12, 8))
        #fig1, ax1 = graph.plot(time_hdf5, y_pos_hdf5, label='Actual position (tracking result)', fignum=1, subplot=211, figsize=(12, 8))
        fig1, ax1, color_patch1 = graph.errorfill(time_hdf5, y_pos_hdf5, fx, label='Actual position (tracking result)', fignum=1, subplot=211,
                               figsize=(12, 8), color='C2')

        # Velocity Plot
        fig1, ax2 = graph.plot(time_csv, commanded_vel_csv, label='Commanded velocity (software outputs)', fignum=1, subplot=212,
                               figsize=(12, 8))
        fig1, ax2 = graph.plot(time_csv, vel_csv, label='Actual velocity (software outputs)', fignum=1, subplot=212, figsize=(12, 8))
        fig1, ax2 = graph.plot(time_hdf5, v_hdf5, label='Actual velocity (tracking result)', fignum=1, subplot=212, figsize=(12, 8))
        graph.setaxes(ax1, tmin, tmax, -0.2, span * 1.3)
        graph.setaxes(ax2, tmin, tmax, -480, 150)
        graph.legend(ax1, loc=1)
        graph.legend(ax2, loc=4)
        graph.addtext(ax1, 'Actual stroke length(tracking code): %.2f + %.2f mm' % (stroke_length_hdf5, 2*fx), option='bl', fontsize=10)
        graph.addtext(ax1, 'Actual stroke length(software): %.2f mm' % stroke_length_csv, option='bl2', fontsize=10)
        graph.labelaxes(ax1,'Time [s]', 'Position y [mm]')
        graph.labelaxes(ax2, 'Time [s]', 'Velocity [mm/s]')
        graph.suptitle(data_tracking_dir_tail)
        # Draw a line where the two data were aligned
        # graph.axvline(ax1, x=time_csv[vel_csv_right_ind], linestyle='--', color='k')
        # graph.axvline(ax2, x=time_csv[vel_csv_right_ind], linestyle='--', color='k')


        # Scatter plot where the two data (tracking code results and software outputs) were aligned
        # if v_hdf5_left_ind+shift_arg >= time_hdf5.shape[0]:
コード例 #3
0
            savedir = resultsdir + '/time_evolution/'
            filename = 'No_vortex_ring_detected'
            graph.save(savedir + filename, ext='png', close=True)
            continue

        # Plot circulation, ring velocity, and diameter
        #fig8, ax8 = graph.scatter(trForGammar, gammar, fignum=2, subplot=131,figsize=(20, 5))
        fig8, ax8 = graph.errorbar(trForGammar,
                                   gammar,
                                   yerr=gammar_err,
                                   fignum=2,
                                   subplot=131,
                                   figsize=(20, 5))
        graph.labelaxes(ax8, 'Time ($s$)', 'Circulation ($mm^2/s$)')
        if gammar_avg * 1.3 > np.max(gammar):
            graph.setaxes(ax8, 0, time[-1], 0, gammar_avg * 1.3)
        else:
            graph.setaxes(ax8, 0, time[-1], 0, np.max(gammar))
        text = 'Average $\Gamma$: %.1f' % gammar_avg + '$mm^2/s$'
        graph.addtext(ax8,
                      x=(time[-1]) / 10.,
                      y=gammar_avg * 1.3 / 4. * 2,
                      text=text)
        text = 'Std.: %.1f' % gammar_std + '$mm^2/s$'
        graph.addtext(ax8,
                      x=(time[-1]) / 10.,
                      y=gammar_avg * 1.3 / 4.,
                      text=text)

        fig9, ax9 = graph.scatter(trForVr,
                                  vr,
コード例 #4
0
                            gammas_uy_err.append(np.sqrt(np.diag(pcov))[1])
                        except:
                            lorentz_peaks_uy.append(np.nan)
                            gammas_uy.append(np.nan)
                            lorentz_peaks_uy_err.append(np.nan)
                            gammas_uy_err.append(np.nan)
                            pass


                        # Plotting stuff
                        axes = [ax11, ax12]
                        xlabels, ylabel = [r'$\Delta U_x$ (px/frame)', r'$\Delta U_y$ (px/frame)'], r'Probability density'
                        title = r'W=%dpx, $v$=%.1f px/frame (PIVLab, Original, Diff.)' % (iw, mag)
                        for ax, xlabel in zip(axes, xlabels):
                            graph.labelaxes(ax, xlabel, ylabel)
                            graph.setaxes(ax, -0.2, 0.2, 0, 80)
                            ax.legend()
                        graph.suptitle(title, fignum=1)
                        # fig1.tight_layout()

                        # Close hdf5 files
                        pivdata.close()
                        fdata.close()

                        figname = '/noisedist/pivlab_fakedata_comp_W%d_v%spxframe_multiple_passes' % (iw, mag_str_2)
                        graph.save(resultdir + figname)
                        # plt.show()
                        plt.close()
                        break
        #     elif args.mode == 'gradient':
        #         max = fs.get_float_from_str(pivdatum_loc, 'max', '_min')  # max velocity
コード例 #5
0
                                                        subplot=236)

                    # Plotting stuff
                    axes = [ax11, ax12, ax13, ax14, ax15, ax16]
                    ccs = [cc11, cc12, cc13, cc14, cc15, cc16]
                    cblabels = [
                        r'$U_x$', r'$U_x$', r'$U_x$', r'$U_y$', r'$U_y$',
                        r'$U_y$'
                    ]
                    xlabel, ylabel = r'$X$ (px)', r'$Y$ (px)'
                    title = r'W=%dpx, $v$=%.1f px/frame (PIVLab, Original, Diff.)' % (
                        iw, mag)
                    for ax, cc, cblabel in zip(axes, ccs, cblabels):
                        graph.add_colorbar(cc, ax=ax, label=cblabel)
                        graph.labelaxes(ax, xlabel, ylabel)
                        graph.setaxes(ax, 0, xx0.shape[1], 0, xx0.shape[0])
                    graph.suptitle(title, fignum=1)
                    fig1.tight_layout()

                    pivdata.close()
                    fdata.close()

                    figname = '/pivlab_fakedata_comp_W%d_v%spxframe_multiple_passes' % (
                        iw, mag_str_2)
                    graph.save(resultdir + figname, ext='png')
                    plt.close()
                    break
        elif args.mode == 'gradient':
            max = fs.get_float_from_str(pivdatum_loc, 'max',
                                        '_min')  # max velocity
            min = fs.get_float_from_str(pivdatum_loc, 'min',
コード例 #6
0
            # veff and vring_err
            veff_list_for_vring, vr_err_list2 = fa.sort_two_arrays_using_order_of_first_array(
                veff_list, vr_err_list)

            # Circulation vs veff
            fig1, ax1 = graph.errorbar(veff_list_for_gammar,
                                       gammar_list1,
                                       yerr=gammar_err_list,
                                       fignum=1,
                                       label=label,
                                       fmt=fmt)
            graph.labelaxes(
                ax1, '|$\overline{v^2_p} / \overline{v_p} \alpha $| [mm/s]',
                '$\Gamma [mm^2/s]$ ')
            ax1.legend()
            graph.setaxes(ax1, 0, 300, 0, 15000)
            graph.save(base_dir + 'gamma_vs_Veff')

            # Stroke length
            fig2, ax2 = graph.plot(veff_list_for_actual_span,
                                   actual_span_ratio_list1,
                                   fignum=2,
                                   marker=fmt,
                                   label=label)
            graph.labelaxes(ax2,
                            '|$\overline{v^2_p} / \overline{v_p}$| [mm/s]',
                            '$L/ L_c[mm^2/s]$ ')
            ax2.legend()
            graph.setaxes(ax2, 0, 300, 0, 1.5)
            graph.axhline(ax2, 1)
            graph.save(base_dir + 'strokelength')
コード例 #7
0
    fig1, ax11, cc11 = graph.color_plot(x, y, ux, vmin=-vmax, vmax=vmax, cmap=cmap, subplot=131, figsize=(20, 6))
    fig1, ax12, cc12 = graph.color_plot(x, y, uy, vmin=-vmax, vmax=vmax, cmap=cmap, subplot=132, figsize=(20, 6))
    fig1, ax13, cc13 = graph.color_plot(x, y, uz, vmin=-vmax, vmax=vmax, cmap=cmap, subplot=133, figsize=(20, 6))
    axes = [ax11, ax12, ax13]
    ccs = [cc11, cc12, cc13]
    clabels = ['$u_x$ (px/unit time)', '$u_y$ (px/unit time)', '$u_z$ (px/unit time)']
    for ax, cc, clabel in zip(axes, ccs, clabels):
        graph.add_colorbar(cc, ax=ax, label=clabel)
        graph.labelaxes(ax, '$X$ (px)', '$Y$ (px)')
    graph.suptitle(r't= %.1f $ \tau_\eta$ = %.2f (unit time)' % (float(vel_keys[i][1:]) * dt / tau_eta, float(vel_keys[i][1:]) * dt), fignum=1)
    #
    fig2, ax2 = graph.pdf(ux, nbins=int(np.sqrt(ydim * xdim)), fignum=2, label='$u_x$ (px/unit time)')
    fig2, ax2 = graph.pdf(uy, nbins=int(np.sqrt(ydim * xdim)), fignum=2, label='$u_y$ (px/unit time)')
    fig2, ax2 = graph.pdf(uz, nbins=int(np.sqrt(ydim * xdim)), fignum=2, label='$u_z$ (px/unit time)')

    graph.setaxes(ax2, -vmax, vmax, -0.05/100., 0.006)
    graph.labelaxes(ax2, '$u_i$ (px/unit time)', 'Probability density')
    graph.suptitle(r't= %.1f $ \tau_\eta$ = %.2f (unit time)' % (float(vel_keys[i][1:]) * dt / tau_eta, float(vel_keys[i][1:]) * dt), fignum=2)
    ax2.legend()

    filename1 = 'vel_field_t' + vel_keys[i][1:]
    filename2 = 'pdf_vel_field_t' + vel_keys[i][1:]
    graph.save(resultdir + filename1, fignum=1, ext='png')
    graph.save(resultdir + filename2, fignum=2, ext='png')

    plt.close('all')
fyle.close()

# # make movies
# movie.make_movie(resultdir + 'vel_field_t', resultdir + 'movie_vel_field', ext='png', framerate=10, option='glob')
# movie.make_movie(resultdir + 'pdf_vel_field_t', resultdir + 'movie_pdf_vel_field', ext='png', framerate=10, option='glob')
コード例 #8
0
        graph.legend(ax2, loc=4)
        graph.addtext(ax1,
                      'Actual stroke length(tracking code): %.2f + %.2f mm' %
                      (stroke_length_hdf5, 2 * fx),
                      option='bl',
                      fontsize=10)
        graph.addtext(ax1,
                      'Actual stroke length(software): %.2f mm' %
                      stroke_length_csv,
                      option='bl2',
                      fontsize=10,
                      alpha=0.5)
        graph.labelaxes(ax1, 'Time [s]', 'Position y [mm]')
        graph.labelaxes(ax2, 'Time [s]', 'Velocity [mm/s]')
        graph.suptitle(data_tracking_dir_tail)
        graph.setaxes(ax1, 0.15, 0.8, -0.5, 13)
        graph.setaxes(ax2, 0.15, 0.8, -550, 200)
        # Draw a line where the two data were aligned
        # graph.axvline(ax1, x=time_csv[vel_csv_right_ind], linestyle='--', color='k')
        # graph.axvline(ax2, x=time_csv[vel_csv_right_ind], linestyle='--', color='k')

        # Scatter plot where the two data (tracking code results and software outputs) were aligned
        # if v_hdf5_left_ind+shift_arg >= time_hdf5.shape[0]:
        #     fig1, ax1 = graph.scatter([time_hdf5[v_hdf5_right_ind + shift_arg - time_hdf5.shape[0]]], [v_hdf5[v_hdf5_right_ind + shift_arg - time_hdf5.shape[0]]], fignum=1, subplot=212,
        #                   marker='x', color='C2', figsize=(12,8))
        # else:
        #     fig1, ax1 = graph.scatter(time_hdf5[v_hdf5_right_ind+shift_arg], v_hdf5[v_hdf5_right_ind+shift_arg], fignum=1, subplot=212,
        #                   marker='x', color='C2', figsize=(12,8))
        # fig1, ax1 = graph.scatter(time_csv[vel_csv_right_ind], vel_csv[vel_csv_right_ind], fignum=1, subplot=212,
        #                   marker='x', color='C1', figsize=(12,8))
コード例 #9
0
                                       fignum=7,
                                       marker='o',
                                       linestyle='-',
                                       label=label)
                fig8, ax9 = graph.plot(vp_commanded_list_for_vmin,
                                       vmin_list,
                                       fignum=8,
                                       marker='o',
                                       linestyle='-',
                                       label=label)

        plt.figure(7)
        plt.legend()
        graph.labelaxes(ax7, 'Commanded velocity [mm/s]',
                        '|$\overline{v^2_p} / \overline{v_p}$| [mm/s]')
        graph.setaxes(ax7, 0, 1100, 0, 800)
        # Save a figure
        plotfilename = os.path.join(
            tracking_settings['input_dir'],
            'motor_characteristics/motor_characteristics')
        graph.save(plotfilename, verbose=True)
        # Save data in pkl
        pickledir = os.path.join(tracking_settings['input_dir'],
                                 'motor_characteristics/')
        pickle_rw.write(vp_commanded_list_for_veff,
                        pickledir + 'vp_commanded_for_veff.pkl')
        pickle_rw.write(veff_list, pickledir + 'veff.pkl')

        plt.figure(8)
        plt.legend()
        graph.labelaxes(ax8, 'Commanded velocity [mm/s]', '|$v_{min}$| [mm/s]')
コード例 #10
0
    n_particles_list.append(float(pivlab_output[-8:-3]))
    # get piv data size
    pivdatasize = ux.shape
    print nnon_nans_ux
    if nnon_nans_ux / 4. < 200:
        nbins = int(nnon_nans_ux * 0.25)
    else:
        nbins = 200
    fig6, ax6 = graph.pdf(ux, nbins=nbins, fignum=6, label=label, alpha=0.7, linestyle=linestyles[i])
    fig7, ax7 = graph.pdf(uy, nbins=nbins, fignum=7, label=label, alpha=0.7, linestyle=linestyles[i])
    data.close()

plt.figure(6)
ax6.legend()
graph.labelaxes(ax6, '$U_x$ (a.u.)', 'Prob. density')
graph.setaxes(ax6, -4, 4, -0.1, 2)
filename = 'pdf_ux'
graph.save(resultdir + filename)

plt.figure(7)
ax7.legend()
graph.labelaxes(ax7, '$U_y$ (a.u.)', 'Prob. density')
graph.setaxes(ax7, -4, 4, -0.1, 2)
filename = 'pdf_uy'
graph.save(resultdir + filename)




# Number of nans as a function of density/number of particles
# Fig 8: Number of nans
コード例 #11
0
                                    uz0_coarse,
                                    cmap=cmap,
                                    vmin=-2,
                                    vmax=2,
                                    fignum=1,
                                    subplot=224)
axes1 = [ax11, ax12, ax13, ax14]
ccs1 = [cc11, cc12, cc13, cc14]
titles1 = [
    'Original $U_x$', 'Coarse-grained $U_x$', 'Coarse-grained $U_y$',
    'Coarse-grained $U_z$'
]
for ax, cc, title in zip(axes1, ccs1, titles1):
    graph.add_colorbar(cc, ax=ax)
    graph.title(ax, title)
    graph.setaxes(ax, 0, 2 * np.pi, 0, 2 * np.pi)
    graph.labelaxes(ax, '$X$ (a.u.)', '$Y$ (a.u.)')
    if cmap == 'RdBu':
        ax.set_facecolor('k')
graph.suptitle('JHTD')
filename = 'jhtd_vel_fields_%s' % cmap
graph.save(resultdir + filename)
plt.close()

################
# PIV-processed data
################
# data architecture
pivlab_outputs = glob.glob(pivdatadir + '/*')
pivlab_output_names = [
    os.path.split(filename)[1] for filename in pivlab_outputs
コード例 #12
0
ファイル: fft_sample.py プロジェクト: tmatsuzawa/turbulence
x=np.linspace(0,20,10)
data = np.sin(x)

ps = np.abs(np.fft.fft(data))**2

time_diff = np.diff(time)
time_diff_avg = np.nanmean(time_diff)
std = np.nanstd(time_diff)

time_step = time_diff_avg
freqs = np.fft.fftfreq(data.size, time_step)
idx = np.argsort(freqs)
ps[:]=[x / max(ps) for x in ps]

fig1, ax1 = graph.plot(freqs[idx], ps[idx])
graph.setaxes(ax1, -10,10,0,1)
plt.show()
#
# # Number of sample points
# N = len(diameter)
# # sample spacing
# dt = 1.0 / 200.0
# t = np.linspace(0.0, N*dt, N)
# x = np.sin(5.0 * 2.0*np.pi*t) + 0.5*np.sin(1.0 * 2.0*np.pi*t)
# xf = fft(x)
# print len(xf)
# f = np.linspace(0.0, 1.0/(2.0*dt), N//2)
#
#
# fig2, ax2 = graph.scatter(t, x)
# graph.show()
コード例 #13
0
basedir = "/Volumes/labshared3-1/takumi/2018_05_13_mid/freq1Hz/PIV_AnalysisResults/PIV_sv_vp_left_macro55mm_fps2000_D25p6mm_piston13p1mm_freq1Hz_v100mms_fx0p1259mmpx_setting1/time_evolution/"

marker = ['v', '^', 's', 'o']  # makers corresponding to domains
fillstyle = ['full', 'none']  # Positive core: fill, Negative core: no fill
colors = graph.get_first_n_colors_from_color_cycle(4)

for domain_num in range(1, 5):
    filename = "time_evolution_data_domain{0}_before_collision.json".format(
        domain_num)
    filepath = basedir + filename
    data = rw.read_json(filepath)

    cx_max, cy_max = data["cxmaxlist"], data["cymaxlist"]
    cx_min, cy_min = data["cxminlist"], data["cyminlist"]
    core_positions = [[cx_max, cy_max], [cx_min, cy_min]]
    fig, ax = graph.set_fig(fignum=3, subplot=111, figsize=(16, 10))
    for j, core_position in enumerate(core_positions):
        cx, cy = core_position[0], core_position[1]
        ax.plot(cx,
                cy,
                color=colors[domain_num - 1],
                marker=marker[domain_num - 1],
                alpha=0.7,
                fillstyle=fillstyle[j])
        graph.setaxes(ax, 0, 127, 0, 90)
        graph.labelaxes(ax, 'x [mm]', 'y [mm]')
        ax.invert_yaxis()
filename = 'trajectories_1'
graph.save(basedir + filename)
graph.show()