コード例 #1
0
def replace_dc_county_with_state_data(
    dataset_in: timeseries.MultiRegionDataset,
) -> timeseries.MultiRegionDataset:
    """Replace DC County data with data from State.

    Args:
        dataset_in: Input dataset.

    Returns: Dataset with DC county data replaced to match DC state.
    """
    dc_state_region = pipeline.Region.from_fips(DC_STATE_FIPS)
    dc_county_region = pipeline.Region.from_fips(DC_COUNTY_FIPS)

    dc_map = {dc_state_region: dc_county_region}

    # aggregate_regions only copies number columns. Extract them and re-add to the aggregated
    # dataset.
    static_excluding_numbers = dataset_in.get_regions_subset(
        [dc_county_region]
    ).static.select_dtypes(exclude="number")
    dc_county_dataset = timeseries.aggregate_regions(dataset_in, dc_map).add_static_values(
        static_excluding_numbers.reset_index()
    )
    dataset_without_dc_county = dataset_in.remove_regions([dc_county_region])

    return dataset_without_dc_county.append_regions(dc_county_dataset)
コード例 #2
0
def aggregate_to_new_york_city(
    ds_in: timeseries.MultiRegionDataset,
) -> timeseries.MultiRegionDataset:
    nyc_region = pipeline.Region.from_fips(NEW_YORK_CITY_FIPS)
    # Map from borough / county to the region used for aggregated NYC
    nyc_map = {borough_region: nyc_region for borough_region in ALL_NYC_REGIONS}

    # aggregate_regions only copies number columns. Extract them and re-add to the aggregated
    # dataset.
    static_excluding_numbers = ds_in.get_regions_subset([nyc_region]).static.select_dtypes(
        exclude="number"
    )
    nyc_dataset = timeseries.aggregate_regions(
        ds_in, nyc_map, reporting_ratio_required_to_aggregate=None
    ).add_static_values(static_excluding_numbers.reset_index())

    return ds_in.append_regions(nyc_dataset)
コード例 #3
0
def derive_ca_county_vaccine_pct(
        ds_in: MultiRegionDataset) -> MultiRegionDataset:
    """Derives vaccination metrics for CA counties based on State 1st vs 2nd dose reporting."""

    ca_county_dataset = ds_in.get_subset(
        aggregation_level=AggregationLevel.COUNTY, state="CA")
    # Get county level time-series in distribution bucket "all". Keep the bucket in the index so
    # that the concat at the bottom of this function has the correct labels for each time-series.
    ca_county_wide = ca_county_dataset.timeseries_bucketed_wide_dates.xs(
        DemographicBucket.ALL,
        level=PdFields.DEMOGRAPHIC_BUCKET,
        drop_level=False)
    fields_to_check = [
        CommonFields.VACCINATIONS_INITIATED,
        CommonFields.VACCINATIONS_COMPLETED,
        CommonFields.VACCINATIONS_INITIATED_PCT,
        CommonFields.VACCINATIONS_COMPLETED_PCT,
    ]
    # Assert that possible fields we want to estimate are all NA - if one of these is
    # not NA, likely do not need to estimate anymore and this methodology can be removed.
    assert ca_county_wide.loc[(slice(None),
                               fields_to_check), :].isna().all().all()

    ca_state_wide = ds_in.get_regions_subset([
        Region.from_state("CA")
    ]).timeseries_bucketed_wide_dates.xs(DemographicBucket.ALL,
                                         level=PdFields.DEMOGRAPHIC_BUCKET,
                                         drop_level=False)

    # Drop location index because not used to apply to county level data
    ca_state_wide = ca_state_wide.droplevel(CommonFields.LOCATION_ID)

    ca_administered = ca_state_wide.loc(
        axis=0)[CommonFields.VACCINES_ADMINISTERED]

    initiated_ratio_of_administered = (
        ca_state_wide.loc(axis=0)[CommonFields.VACCINATIONS_INITIATED] /
        ca_administered)
    completed_ratio_of_administered = (
        ca_state_wide.loc(axis=0)[CommonFields.VACCINATIONS_COMPLETED] /
        ca_administered)

    county_administered = ca_county_wide.loc(
        axis=0)[:, CommonFields.VACCINES_ADMINISTERED]

    estimated_initiated = county_administered * initiated_ratio_of_administered
    estimated_completed = county_administered * completed_ratio_of_administered

    vaccines_initiated_pct = (estimated_initiated.div(
        ca_county_dataset.static.loc[:, CommonFields.POPULATION],
        level=CommonFields.LOCATION_ID,
        axis="index",
    ) * 100)
    vaccines_initiated_pct = vaccines_initiated_pct.rename(
        index={
            CommonFields.VACCINES_ADMINISTERED:
            CommonFields.VACCINATIONS_INITIATED_PCT
        },
        level=PdFields.VARIABLE,
    )

    vaccines_completed_pct = (estimated_completed.div(
        ca_county_dataset.static.loc[:, CommonFields.POPULATION],
        level=CommonFields.LOCATION_ID,
        axis="index",
    ) * 100)
    vaccines_completed_pct = vaccines_completed_pct.rename(
        index={
            CommonFields.VACCINES_ADMINISTERED:
            CommonFields.VACCINATIONS_COMPLETED_PCT
        },
        level=PdFields.VARIABLE,
    )

    all_wide = ds_in.timeseries_bucketed_wide_dates
    # Because we assert that existing dataset does not have CA county VACCINATIONS_COMPLETED_PCT
    # or VACCINATIONS_INITIATED_PCT we can safely combine the existing rows with new derived rows
    return ds_in.replace_timeseries_wide_dates(
        [vaccines_completed_pct, vaccines_initiated_pct, all_wide])