def main(directed): logfile = 'results-permutations/timigs-{}.txt'.format( 'directed' if directed else 'undirected') memory = Profiling( 'Permutations {}'.format('directed' if directed else 'undirected'), 'results-permutations/python-profiling-nperm-nodes{}-{}.png'.format( NCOUNTRIES, 'directed' if directed else 'undirected'), True) memory.check_memory('init-{}'.format('d' if directed else 'i')) ####################################################################### # Data Matrices ####################################################################### X1 = getMatrix('data-permutations/country_trade_index.txt', directed, True) memory.check_memory('X1-{}'.format('d' if directed else 'i')) X2 = getMatrix('data-permutations/country_distance_index.txt', directed, True) memory.check_memory('X2-{}'.format('d' if directed else 'i')) X3 = getMatrix('data-permutations/country_colonial_index.txt', directed) Y = getMatrix('data-permutations/country_lang_index.txt', directed) memory.check_memory('Y-{}'.format('d' if directed else 'i')) X = {'TRADE': X1, 'DISTANCE': X2, 'COLONIAL': X3} Y = {'LANG': Y} np.random.seed(1) ####################################################################### # QAP ####################################################################### perms = np.logspace(1, 7, num=7 - 1, endpoint=False) for nperm in perms: start_time = time.time() mrqap = MRQAP(Y=Y, X=X, npermutations=int(nperm), diagonal=False, directed=directed, logfile=logfile, memory=memory) mrqap.mrqap() utils.printf( "--- {}, nperm {}: {} seconds ---".format( 'directed' if directed else 'undirected', nperm, time.time() - start_time), logfile) mrqap.summary() fn = 'results-permutations/python-nperm{}-{}-<coef>.png'.format( nperm, 'directed' if directed else 'undirected') mrqap.plot('betas', fn.replace('<coef>', 'betas')) mrqap.plot('tvalues', fn.replace('<coef>', 'tvalues')) utils.printf( '******************************************************************************\n\n', logfile) del (mrqap) return
def main(directed): logfile = 'results-synthetic-ernos-renyi/timigs-{}.txt'.format('directed' if directed else 'undirected') memory = Profiling('Nodes {}'.format('directed' if directed else 'undirected'), 'results-synthetic-ernos-renyi/python-profiling-netsize-edgeprob{}-nperm{}-{}.png'.format(EDGEPROB, NPERMUTATIONS,'directed' if directed else 'undirected'), False) memory.check_memory('init-{}'.format('d' if directed else 'i')) ####################################################################### # Data Matrices ####################################################################### #nnodes = np.logspace(1,7,num=7-1, endpoint=False) nnodes = np.logspace(1,5,num=5-1, endpoint=False) for n in nnodes: n = int(n) fn = 'data-synthetic-ernos-renyi/nodes{}_edgeprob{}_<var>.dat'.format(n,EDGEPROB) memory.check_memory('nodes-{}'.format(n)) X1 = generateGraph(n,EDGEPROB,directed, fn.replace('<var>','X1')) memory.check_memory('X1-{}'.format(n)) X2 = generateGraph(n,EDGEPROB,directed, fn.replace('<var>','X2')) memory.check_memory('X2-{}'.format(n)) X3 = generateGraph(n,EDGEPROB,directed, fn.replace('<var>','X3')) memory.check_memory('X3-{}'.format(n)) Y = generateGraph(n,EDGEPROB,directed, fn.replace('<var>','Y')) memory.check_memory('Y-{}'.format(n)) X = {'X1':X1, 'X2':X2, 'X3':X3} Y = {'Y':Y} ####################################################################### # QAP ####################################################################### start_time = time.time() mrqap = MRQAP(Y=Y, X=X, npermutations=int(NPERMUTATIONS), diagonal=False, directed=directed, logfile=logfile, memory=memory) mrqap.mrqap() utils.printf("\n--- {}, nodes {}: {} seconds ---".format('directed' if directed else 'undirected', n, time.time() - start_time), logfile) mrqap.summary() fn = 'results-synthetic-ernos-renyi/python-nodes{}-edgeprob{}-nperm{}-{}-<coef>.png'.format(n, EDGEPROB, NPERMUTATIONS,'directed' if directed else 'undirected') mrqap.plot('betas',fn.replace('<coef>','betas')) mrqap.plot('tvalues',fn.replace('<coef>','tvalues')) utils.printf('******************************************************************************\n\n', logfile) del(mrqap) return
def main(directed): logfile = 'results-permutations/timigs-{}.txt'.format('directed' if directed else 'undirected') memory = Profiling('Permutations {}'.format('directed' if directed else 'undirected'), 'results-permutations/python-profiling-nperm-nodes{}-{}.png'.format(NCOUNTRIES,'directed' if directed else 'undirected'), True) memory.check_memory('init-{}'.format('d' if directed else 'i')) ####################################################################### # Data Matrices ####################################################################### X1 = getMatrix('data-permutations/country_trade_index.txt',directed,True) memory.check_memory('X1-{}'.format('d' if directed else 'i')) X2 = getMatrix('data-permutations/country_distance_index.txt',directed,True) memory.check_memory('X2-{}'.format('d' if directed else 'i')) X3 = getMatrix('data-permutations/country_colonial_index.txt',directed) Y = getMatrix('data-permutations/country_lang_index.txt',directed) memory.check_memory('Y-{}'.format('d' if directed else 'i')) X = {'TRADE':X1, 'DISTANCE':X2, 'COLONIAL':X3} Y = {'LANG':Y} np.random.seed(1) ####################################################################### # QAP ####################################################################### perms = np.logspace(1,7,num=7-1, endpoint=False) for nperm in perms: start_time = time.time() mrqap = MRQAP(Y=Y, X=X, npermutations=int(nperm), diagonal=False, directed=directed, logfile=logfile, memory=memory) mrqap.mrqap() utils.printf("--- {}, nperm {}: {} seconds ---".format('directed' if directed else 'undirected', nperm, time.time() - start_time), logfile) mrqap.summary() fn = 'results-permutations/python-nperm{}-{}-<coef>.png'.format(nperm,'directed' if directed else 'undirected') mrqap.plot('betas', fn.replace('<coef>','betas')) mrqap.plot('tvalues', fn.replace('<coef>','tvalues')) utils.printf('******************************************************************************\n\n', logfile) del(mrqap) return
####################################################################### import numpy as np from libs.mrqap import MRQAP ####################################################################### # Data # Source: http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm ####################################################################### X1 = np.loadtxt('data/crudematerials.dat') X2 = np.loadtxt('data/foods.dat') X3 = np.loadtxt('data/manufacturedgoods.dat') X4 = np.loadtxt('data/minerals.dat') Y = np.loadtxt('data/diplomatic.dat') X = { 'CRUDEMATERIALS': X1, 'FOODS': X2, 'MANUFACTUREDGOODS': X3, 'MINERALS': X4 } Y = {'DIPLOMATIC': Y} np.random.seed(473) ####################################################################### # QAP ####################################################################### mrqap = MRQAP(Y=Y, X=X, npermutations=2000, diagonal=False, directed=True) mrqap.mrqap() mrqap.summary() mrqap.plot('betas') mrqap.plot('tvalues')
X2 = np.loadtxt('data-cg/noise-5.0.matrix',delimiter=',') X3 = np.loadtxt('data-cg/noise-10.0.matrix',delimiter=',') X4 = np.loadtxt('data-cg/noise-100.0.matrix',delimiter=',') X5 = np.loadtxt('data-cg/noise-1000.0.matrix',delimiter=',') X6 = np.loadtxt('data-cg/20Homophily-80Heterophily.matrix',delimiter=',') X7 = np.loadtxt('data-cg/80Homophily-20Heterophily.matrix',delimiter=',') X8 = np.loadtxt('data-cg/80ToBlue-20ToRed.matrix',delimiter=',') X9 = np.loadtxt('data-cg/80ToRed-20ToBlue.matrix',delimiter=',') X10 = np.loadtxt('data-cg/90Homophily-10Heterophily.matrix',delimiter=',') X11 = np.loadtxt('data-cg/100Homophily-0Heterophily.matrix',delimiter=',') X12 = np.loadtxt('data-cg/ToBlueOnly.matrix',delimiter=',') X13 = np.loadtxt('data-cg/ToRedOnly.matrix',delimiter=',') X14 = np.loadtxt('data-cg/uniform-0.02.matrix',delimiter=',') X = {'NOISE1':X1, 'NOISE5':X2, 'NOISE10':X3, 'NOISE100':X4, 'NOISE1000':X5, 'Hom20Het80':X6, 'Hom80Het20':X7, 'Blue80Red20':X8, 'Red80Blue20':X9, 'Hom90Het10':X10,'Hom100Het0':X11, 'ToBlue':X12, 'ToRed':X13, 'UNIFORM':X14} Y = {'DATA':Y} np.random.seed(1) ####################################################################### # QAP ####################################################################### start_time = time.time() mrqap = MRQAP(Y=Y, X=X, npermutations=NPERMUTATIONS, diagonal=False, directed=DIRECTED, standarized=True) mrqap.mrqap() mrqap.summary() print("--- {}, {}: {} seconds ---".format('directed' if DIRECTED else 'undirected', NPERMUTATIONS, time.time() - start_time)) mrqap.plot('betas','results-cg/betas.pdf') mrqap.plot('tvalues','results-cg/tvalues.pdf')
def main(directed): logfile = 'results-synthetic-ernos-renyi/timigs-{}.txt'.format( 'directed' if directed else 'undirected') memory = Profiling( 'Nodes {}'.format('directed' if directed else 'undirected'), 'results-synthetic-ernos-renyi/python-profiling-netsize-edgeprob{}-nperm{}-{}.png' .format(EDGEPROB, NPERMUTATIONS, 'directed' if directed else 'undirected'), False) memory.check_memory('init-{}'.format('d' if directed else 'i')) ####################################################################### # Data Matrices ####################################################################### #nnodes = np.logspace(1,7,num=7-1, endpoint=False) nnodes = np.logspace(1, 5, num=5 - 1, endpoint=False) for n in nnodes: n = int(n) fn = 'data-synthetic-ernos-renyi/nodes{}_edgeprob{}_<var>.dat'.format( n, EDGEPROB) memory.check_memory('nodes-{}'.format(n)) X1 = generateGraph(n, EDGEPROB, directed, fn.replace('<var>', 'X1')) memory.check_memory('X1-{}'.format(n)) X2 = generateGraph(n, EDGEPROB, directed, fn.replace('<var>', 'X2')) memory.check_memory('X2-{}'.format(n)) X3 = generateGraph(n, EDGEPROB, directed, fn.replace('<var>', 'X3')) memory.check_memory('X3-{}'.format(n)) Y = generateGraph(n, EDGEPROB, directed, fn.replace('<var>', 'Y')) memory.check_memory('Y-{}'.format(n)) X = {'X1': X1, 'X2': X2, 'X3': X3} Y = {'Y': Y} ####################################################################### # QAP ####################################################################### start_time = time.time() mrqap = MRQAP(Y=Y, X=X, npermutations=int(NPERMUTATIONS), diagonal=False, directed=directed, logfile=logfile, memory=memory) mrqap.mrqap() utils.printf( "\n--- {}, nodes {}: {} seconds ---".format( 'directed' if directed else 'undirected', n, time.time() - start_time), logfile) mrqap.summary() fn = 'results-synthetic-ernos-renyi/python-nodes{}-edgeprob{}-nperm{}-{}-<coef>.png'.format( n, EDGEPROB, NPERMUTATIONS, 'directed' if directed else 'undirected') mrqap.plot('betas', fn.replace('<coef>', 'betas')) mrqap.plot('tvalues', fn.replace('<coef>', 'tvalues')) utils.printf( '******************************************************************************\n\n', logfile) del (mrqap) return
'NOISE5': X2, 'NOISE10': X3, 'NOISE100': X4, 'NOISE1000': X5, 'ERDOS05': X6, 'ERDOS1': X7, 'GEOMETRIC1': X8, 'BARABASI49': X9, 'UNIFORM': X10 } Y = {'DATA': Y} np.random.seed(1) ####################################################################### # QAP ####################################################################### start_time = time.time() mrqap = MRQAP(Y=Y, X=X, npermutations=NPERMUTATIONS, diagonal=False, directed=DIRECTED, standarized=False) mrqap.mrqap() mrqap.summary() print("--- {}, {}: {} seconds ---".format( 'directed' if DIRECTED else 'undirected', NPERMUTATIONS, time.time() - start_time)) mrqap.plot('betas', 'results-rg/betas.pdf') mrqap.plot('tvalues', 'results-rg/tvalues.pdf')
# assert both countries have sufficient population size for study if not (pair[0] in code_index_map.keys() and pair[1] in code_index_map.keys()): continue i = code_index_map.get(pair[0]) j = code_index_map.get(pair[1]) # put densities into matrix density_matrix[i, j] = code_pairs_to_densities.get(key) density_matrix[j, i] = code_pairs_to_densities.get(key) dependents = { "COMMUNICATION_DENSITY": density_matrix, } ########################################### ########################################### # PERFORM MRQAP ########################################### ########################################### NPERMUTATIONS = 2000 mrqap = MRQAP(Y=dependents, X=independents, npermutations=NPERMUTATIONS, diagonal=False, directed=False) mrqap.mrqap() mrqap.summary()
####################################################################### ####################################################################### # Dependencies ####################################################################### import numpy as np from libs.mrqap import MRQAP ####################################################################### # Data # Source: http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm ####################################################################### X1 = np.loadtxt('data/crudematerials.dat') X2 = np.loadtxt('data/foods.dat') X3 = np.loadtxt('data/manufacturedgoods.dat') X4 = np.loadtxt('data/minerals.dat') Y = np.loadtxt('data/diplomatic.dat') X = {'CRUDEMATERIALS':X1, 'FOODS':X2, 'MANUFACTUREDGOODS':X3, 'MINERALS':X4} Y = {'DIPLOMATIC':Y} np.random.seed(473) ####################################################################### # QAP ####################################################################### mrqap = MRQAP(Y=Y, X=X, npermutations=2000, diagonal=False, directed=True) mrqap.mrqap() mrqap.summary() mrqap.plot('betas') mrqap.plot('tvalues')