# Draw Detection Results (Stage-1, Stage-2) if global_step % cfg.log_image == 0: summary_out = [] input_np = everything2numpy(input) # Get Detection Results dets_dict = model_ori.get_final_results() for key, dets in dets_dict.iteritems(): Is = single_shot.draw_detection() Is = Is.astype(np.uint8) summary_out += log_images() # Draw Ground-Truth Is = single_shot.draw_gtboxes() Is = Is.astype(np.uint8) summary_out += log_images() summary = model_ori.get_summaries() for s in summary: writer.add_summary() for s in summary_out: writer.add_summary() summary_out = [] # end_if global_step += 1 # end_for if not cfg.save_prefix: save_path = os.path.join()
score_threshold=cfg.score_threshold, max_dets=cfg.max_det_num, overlap_threshold=cfg.overlap_threshold) for key, dets in dets_dict.iteritems(): Is = single_shot.draw_detection(input_np, dets, class_names=class_names) Is = Is.astype(np.uint8) summary_out += log_images(Is, image_ids, global_step, prefix='Detection_' + key) # draw gt Is = single_shot.draw_gtboxes(input_np, gt_boxes_list, class_names=class_names) Is = Is.astype(np.uint8) summary_out += log_images(Is, image_ids, global_step, prefix='GT') # # draw positive anchors on images # if True: # Imgs, cnt = single_shot.draw_anchors(everything2numpy(input), everything2numpy(rpn_targets), # anchors_np, class_names=class_names) # Imgs = Imgs.astype(np.uint8) # summary_out += log_images(Imgs, image_ids, global_step, prefix='GT_anchor') # # print (time.strftime("%H:%M:%S ") + '{} positive anchors'.format(cnt)) summary = model_ori.get_summaries(is_training=True) for s in summary:
def main(): # config model and lr num_anchors = len(cfg.anchor_ratios) * len(cfg.anchor_scales[0]) * len(cfg.anchor_shift) \ if isinstance(cfg.anchor_scales[0], list) else \ len(cfg.anchor_ratios) * len(cfg.anchor_scales) resnet = resnet50 if cfg.backbone == 'resnet50' else resnet101 detection_model = MaskRCNN if cfg.model_type.lower( ) == 'maskrcnn' else RetinaNet model = detection_model(resnet(pretrained=True, maxpool5=cfg.maxpool5), num_classes=cfg.num_classes, num_anchors=num_anchors, strides=cfg.strides, in_channels=cfg.in_channels, f_keys=cfg.f_keys, num_channels=256, is_training=False, activation=cfg.class_activation) lr = cfg.lr start_epoch = 0 if cfg.restore is not None: meta = load_net(cfg.restore, model) print(meta) if meta[0] >= 0: start_epoch = meta[0] + 1 lr = meta[1] print('Restored from %s, starting from %d epoch, lr:%.6f' % (cfg.restore, start_epoch, lr)) else: raise ValueError('restore is not set') model.cuda() model.eval() class_names = test_data.dataset.classes print('dataset len: {}'.format(len(test_data.dataset))) tb_dir = os.path.join(cfg.train_dir, cfg.backbone + '_' + cfg.datasetname, 'test', time.strftime("%h%d_%H")) writer = tbx.FileWriter(tb_dir) # main loop timer_all = Timer() timer_post = Timer() all_results1 = [] all_results2 = [] all_results_gt = [] for step, batch in enumerate(test_data): timer_all.tic() # NOTE: Targets is in NHWC order!! # input, anchors_np, im_scale_list, image_ids, gt_boxes_list = batch # input = everything2cuda(input) input_t, anchors_np, im_scale_list, image_ids, gt_boxes_list = batch input = everything2cuda(input_t, volatile=True) outs = model(input, gt_boxes_list=None, anchors_np=anchors_np) if cfg.model_type == 'maskrcnn': rpn_logit, rpn_box, rpn_prob, rpn_labels, rpn_bbtargets, rpn_bbwghts, anchors, \ rois, roi_img_ids, rcnn_logit, rcnn_box, rcnn_prob, rcnn_labels, rcnn_bbtargets, rcnn_bbwghts = outs outputs = [ rois, roi_img_ids, rpn_logit, rpn_box, rpn_prob, rcnn_logit, rcnn_box, rcnn_prob, anchors ] targets = [] elif cfg.model_type == 'retinanet': rpn_logit, rpn_box, rpn_prob, _, _, _ = outs outputs = [rpn_logit, rpn_box, rpn_prob] else: raise ValueError('Unknown model type: %s' % cfg.model_type) timer_post.tic() dets_dict = model.get_final_results( outputs, everything2cuda(anchors_np), score_threshold=0.01, max_dets=cfg.max_det_num * cfg.batch_size, overlap_threshold=cfg.overlap_threshold) if 'stage1' in dets_dict: Dets = dets_dict['stage1'] else: raise ValueError('No stage1 results:', dets_dict.keys()) Dets2 = dets_dict['stage2'] if 'stage2' in dets_dict else Dets t3 = timer_post.toc() t = timer_all.toc() formal_res1 = dataset.to_detection_format(copy.deepcopy(Dets), image_ids, im_scale_list) formal_res2 = dataset.to_detection_format(copy.deepcopy(Dets2), image_ids, im_scale_list) all_results1 += formal_res1 all_results2 += formal_res2 Dets_gt = [] for gb in gt_boxes_list: cpy_mask = gb[:, 4] >= 1 gb = gb[cpy_mask] n = cpy_mask.astype(np.int32).sum() res_gt = np.zeros((n, 6)) res_gt[:, :4] = gb[:, :4] res_gt[:, 4] = 1. res_gt[:, 5] = gb[:, 4] Dets_gt.append(res_gt) formal_res_gt = dataset.to_detection_format(Dets_gt, image_ids, im_scale_list) all_results_gt += formal_res_gt if step % cfg.log_image == 0: input_np = everything2numpy(input) summary_out = [] Is = single_shot.draw_detection(input_np, Dets, class_names=class_names) Is = Is.astype(np.uint8) summary_out += log_images(Is, image_ids, step, prefix='Detection/') Is = single_shot.draw_detection(input_np, Dets2, class_names=class_names) Is = Is.astype(np.uint8) summary_out += log_images(Is, image_ids, step, prefix='Detection2/') Imgs = single_shot.draw_gtboxes(input_np, gt_boxes_list, class_names=class_names) Imgs = Imgs.astype(np.uint8) summary_out += log_images(Imgs, image_ids, float(step), prefix='GT') for s in summary_out: writer.add_summary(s, float(step)) if step % cfg.display == 0: print(time.strftime("%H:%M:%S ") + 'Epoch %d iter %d: speed %.3fs (%.3fs)' % (0, step, t, t3) + ' ImageIds: ' + ', '.join(str(s) for s in image_ids), end='\r') res_dict = { 'stage1': all_results1, 'stage2': all_results2, 'gt': all_results_gt } return res_dict
def main(): # config model and lr num_anchors = len(cfg.anchor_ratios) * len(cfg.anchor_scales[0]) \ if isinstance(cfg.anchor_scales[0], list) else \ len(cfg.anchor_ratios) * len(cfg.anchor_scales) resnet = resnet50 if cfg.backbone == 'resnet50' else resnet101 detection_model = MaskRCNN if cfg.model_type.lower( ) == 'maskrcnn' else RetinaNet model = detection_model(resnet(pretrained=True), num_classes=cfg.num_classes, num_anchors=num_anchors, strides=cfg.strides, in_channels=cfg.in_channels, f_keys=cfg.f_keys, num_channels=256, is_training=False, activation=cfg.class_activation) lr = cfg.lr start_epoch = 0 if cfg.restore is not None: meta = load_net(cfg.restore, model) print(meta) if meta[0] >= 0: start_epoch = meta[0] + 1 lr = meta[1] print('Restored from %s, starting from %d epoch, lr:%.6f' % (cfg.restore, start_epoch, lr)) else: raise ValueError('restore is not set') model.cuda() model.eval() ANCHORS = np.vstack( [anc.reshape([-1, 4]) for anc in test_data.dataset.ANCHORS]) model.anchors = everything2cuda(ANCHORS.astype(np.float32)) class_names = test_data.dataset.classes print('dataset len: {}'.format(len(test_data.dataset))) tb_dir = os.path.join(cfg.train_dir, cfg.backbone + '_' + cfg.datasetname, 'test', time.strftime("%h%d_%H")) writer = tbx.FileWriter(tb_dir) summary_out = [] # main loop timer_all = Timer() timer_post = Timer() all_results1 = [] all_results2 = [] all_results_gt = [] for step, batch in enumerate(test_data): timer_all.tic() # NOTE: Targets is in NHWC order!! input, image_ids, gt_boxes_list, image_ori = batch input = everything2cuda(input) outs = model(input) timer_post.tic() dets_dict = model.get_final_results( score_threshold=0.05, max_dets=cfg.max_det_num * cfg.batch_size, overlap_threshold=cfg.overlap_threshold) if 'stage1' in dets_dict: Dets = dets_dict['stage1'] else: raise ValueError('No stage1 results:', dets_dict.keys()) Dets2 = dets_dict['stage2'] if 'stage2' in dets_dict else Dets t3 = timer_post.toc() t = timer_all.toc() formal_res1 = dataset.to_detection_format( copy.deepcopy(Dets), image_ids, ori_sizes=[im.shape for im in image_ori]) formal_res2 = dataset.to_detection_format( copy.deepcopy(Dets2), image_ids, ori_sizes=[im.shape for im in image_ori]) all_results1 += formal_res1 all_results2 += formal_res2 if step % cfg.log_image == 0: input_np = everything2numpy(input) summary_out = [] Is = single_shot.draw_detection(input_np, Dets, class_names=class_names) Is = Is.astype(np.uint8) summary_out += log_images(Is, image_ids, step, prefix='Detection/') Is = single_shot.draw_detection(input_np, Dets2, class_names=class_names) Is = Is.astype(np.uint8) summary_out += log_images(Is, image_ids, step, prefix='Detection2/') Imgs = single_shot.draw_gtboxes(input_np, gt_boxes_list, class_names=class_names) Imgs = Imgs.astype(np.uint8) summary_out += log_images(Imgs, image_ids, float(step), prefix='GT') for s in summary_out: writer.add_summary(s, float(step)) if step % cfg.display == 0: print(time.strftime("%H:%M:%S ") + 'Epoch %d iter %d: speed %.3fs (%.3fs)' % (0, step, t, t3) + ' ImageIds: ' + ', '.join(str(s) for s in image_ids), end='\r') res_dict = { 'stage1': all_results1, 'stage2': all_results2, 'gt': all_results_gt } return res_dict