コード例 #1
0
def main(plda, enroll_xvector, test_xvector, trials, scores):

    with kaldi_io.open_or_fd(plda, 'rb') as f:
        for key, vec in kaldi_io.read_vec_flt_ark(f):
            if key == 'mean':
                mean = vec.reshape(-1, 1)
                dim = vec.shape[0]
            elif key == 'within_var':
                within_var = vec.reshape(dim, dim)
            else:
                between_var = vec.reshape(dim, dim)

    within_var = within_var + 5e-5 * np.eye(within_var.shape[0])

    Gamma, Lambda, c, k = CalculateVar(between_var, within_var, mean)

    f_writer = open(scores, 'w')
    enrollutt2vector = {}
    for key, vector in kaldi_io.read_vec(enroll_xvector):
        enrollutt2vector[key] = vector

    testutt2vector = {}
    for key, vector in kaldi_io.read_vec(test_xvector):
        testutt2vector[key] = vector

    with open(trials, 'r') as f:
        for line in f:
            enroll, test, _ = line.strip().split()

            score = PLDAScoring(enrollutt2vector[enroll].reshape(-1,1),testutt2vector[test].reshape(-1,1),\
                                                                Gamma,Lambda,c,k)
            f_writer.write(enroll + ' ' + test + ' ' + str(score) + '\n')
    f_writer.close()
コード例 #2
0
    def plda_write(self, plda):

        with kaldi_io.open_or_fd(plda, 'wb') as f:
            kaldi_io.write_vec_flt(f, self.mean, key='mean')
            kaldi_io.write_vec_flt(f,
                                   self.within_var.reshape(-1, 1),
                                   key='within_var')
            kaldi_io.write_vec_flt(f,
                                   self.between_var.reshape(-1, 1),
                                   key='between_var')
コード例 #3
0
    def plda_read(self, plda):

        with kaldi_io.open_or_fd(plda, 'rb') as f:
            for key, vec in kaldi_io.read_vec_flt_ark(f):
                if key == 'mean':
                    self.mean = vec.reshape(-1, 1)
                    self.dim = self.mean.shape[0]
                elif key == 'within_var':
                    self.within_var = vec.reshape(self.dim, self.dim)
                else:
                    self.between_var = vec.reshape(self.dim, self.dim)
コード例 #4
0
    def plda_read(self,plda):
      
        with kaldi_io.open_or_fd(plda,'rb') as f:
            for key,vec in kaldi_io.read_vec_flt_ark(f):
                if key == 'mean':
                    mean = vec.reshape(-1,1)
                    dim = mean.shape[0]
                elif key == 'within_var':
                    within_var = vec.reshape(dim, dim)
                else:
                    between_var = vec.reshape(dim, dim)

        return mean,between_var,within_var
コード例 #5
0
        model_blueprint, model_creation = utils.read_nnet_config(args.nnet_config)
    elif args.model_blueprint is not None and args.model_creation is not None:
        model_blueprint = args.model_blueprint
        model_creation = args.model_creation
    else:
        raise ValueError("Expected nnet_config or (model_blueprint, model_creation) to exist.")

    model = utils.create_model_from_py(model_blueprint, model_creation)
    model.load_state_dict(torch.load(args.model_path, map_location='cpu'), strict=False)

    # Select device
    model = utils.select_model_device(model, args.use_gpu, gpu_id=args.gpu_id)

    model.eval()

    with kaldi_io.open_or_fd(args.feats_rspecifier, "rb") as r, \
            kaldi_io.open_or_fd(args.vectors_wspecifier, 'wb') as w:
        for line in r:
            # (key, rxfile, chunk_start, chunk_end) = line.decode().split(' ')
            # chunk=[chunk_start, chunk_end]
            # print("Process utterance for key {0}".format(key))
            # feats = kaldi_io.read_mat(rxfile, chunk=chunk)
            (key, rxfile) = line.decode().split(' ')
            print("Process utterance for key {0}".format(key))
            feats = kaldi_io.read_mat(rxfile)
            embedding = model.extract_embedding(feats)
            kaldi_io.write_vec_flt(w, embedding.numpy(), key=key)

        # while(True):
        #     key = kaldi_io.read_key(r)
        #     if not key: