コード例 #1
0
ファイル: trainer.py プロジェクト: qlindazm/asv-subtools
 def select_device(self):
     return utils.select_model_device(self.elements["model"],
                                      self.params["use_gpu"],
                                      gpu_id=self.params["gpu_id"],
                                      benchmark=self.params["benchmark"])
コード例 #2
0
try:
    # nnet_config include model_blueprint and model_creation
    if args.nnet_config != "":
        model_blueprint, model_creation = utils.read_nnet_config(args.nnet_config)
    elif args.model_blueprint is not None and args.model_creation is not None:
        model_blueprint = args.model_blueprint
        model_creation = args.model_creation
    else:
        raise ValueError("Expected nnet_config or (model_blueprint, model_creation) to exist.")

    model = utils.create_model_from_py(model_blueprint, model_creation)
    model.load_state_dict(torch.load(args.model_path, map_location='cpu'), strict=False)

    # Select device
    model = utils.select_model_device(model, args.use_gpu, gpu_id=args.gpu_id)

    model.eval()

    with kaldi_io.open_or_fd(args.feats_rspecifier, "rb") as r, \
            kaldi_io.open_or_fd(args.vectors_wspecifier, 'wb') as w:
        for line in r:
            # (key, rxfile, chunk_start, chunk_end) = line.decode().split(' ')
            # chunk=[chunk_start, chunk_end]
            # print("Process utterance for key {0}".format(key))
            # feats = kaldi_io.read_mat(rxfile, chunk=chunk)
            (key, rxfile) = line.decode().split(' ')
            print("Process utterance for key {0}".format(key))
            feats = kaldi_io.read_mat(rxfile)
            embedding = model.extract_embedding(feats)
            kaldi_io.write_vec_flt(w, embedding.numpy(), key=key)