コード例 #1
0
def test_grid():
    def total_elements(dim):
        return reduce(lambda x, y: x * y, dim, 1)

    num_spectra = 1024 * 64
    start_spectrum = 0
    end_spectrum = num_spectra
    spectrum_mask = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_BOOL, (num_spectra, ))
    x = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_DOUBLE,
                                                     (num_spectra, ))
    y = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_DOUBLE,
                                                     (num_spectra, ))
    support = 10
    sampling = 2
    num_polarizations = 4
    num_polarizations_for_grid = 2
    num_channels = 2048
    num_channels_for_grid = 1024
    polarization_map = libsakurapy.new_aligned_buffer(
        libsakurapy.TYPE_INT32,
        map(lambda x: x % num_polarizations_for_grid,
            range(num_polarizations)))
    channel_map = libsakurapy.new_aligned_buffer(
        libsakurapy.TYPE_INT32,
        map(lambda x: x % num_channels_for_grid, range(num_channels)))

    dim = (num_spectra, num_polarizations, num_channels)
    print total_elements(dim)
    mask = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_INT8, dim)
    mask = libsakurapy.uint8_to_bool(
        total_elements(dim), mask,
        libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_BOOL,
                                                     dim))
    value = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, dim)
    weight = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (num_spectra, num_channels))
    num_convolution_table = int(
        math.ceil(math.sqrt(2.) * (support + 1) * sampling))
    convolution_table = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (num_convolution_table, ))

    width, height = (160, 100)
    weight_sum = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_DOUBLE,
        (num_polarizations_for_grid, num_channels_for_grid))
    dim = (height, width, num_polarizations_for_grid, num_channels_for_grid)
    weight_of_grid = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, dim)
    grid = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, dim)

    libsakurapy.grid_convolving(
        num_spectra, start_spectrum, end_spectrum, spectrum_mask, x, y,
        support, sampling, num_polarizations, polarization_map, num_channels,
        channel_map, mask, value, weight, False, num_convolution_table,
        convolution_table, num_polarizations_for_grid, num_channels_for_grid,
        width, height, weight_sum, weight_of_grid, grid)
コード例 #2
0
def test_bit():
    # Test operate_bits_uint8_or
    mask = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_BOOL,
                                          [True] * 4 + [False] * 4)
    data8 = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_INT8,
                                           [0, 2, 1, 3] * 2)
    ndata = libsakurapy.get_elements_of_aligned_buffer(data8)[0]
    result = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_INT8, (ndata, ))
    out = libsakurapy.operate_bits_uint8_or(2, ndata, data8, mask, result)
    del mask, data8, result, ndata, out
コード例 #3
0
def test_stats():
    try:
        libsakurapy.compute_statistics()
    except Exception as e:
        print e

    num = 4
    mask = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_BOOL,
                                          (True, ) * num)
    data = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, range(num))
    result = libsakurapy.compute_statistics(4, data, mask)
    print result
    del mask
    del data
コード例 #4
0
def test_calibration():
    ndata = 7
    yon = [5.0 for i in range(ndata)]
    yoff = [(on - 1.0) for on in yon]
    factor = [float(i) for i in range(ndata)]
    ondata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, yon)
    offdata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, yoff)
    facdata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, factor)
    result = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (ndata, ))
    out = libsakurapy.apply_position_switch_calibration(
        len(factor), facdata, ndata, ondata, offdata, result)
    # the result should be [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5]
    del yon, yoff, factor, ondata, offdata, facdata, result, out
コード例 #5
0
def test_baseline():
    ndata = 8
    order = 1
    ctxbl = libsakurapy.create_baseline_context(
        libsakurapy.BASELINE_TYPE_POLYNOMIAL, order, ndata)
    y = [0.5 * i for i in range(ndata)]
    m = [True] * ndata
    y[4] += 3.
    m[4] = False
    data = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, y)
    mask = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_BOOL, m)
    result = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (ndata, ))
    final_mask = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_BOOL, (ndata, ))
    out = libsakurapy.subtract_baseline(ndata, data, mask, ctxbl, 5., 1, True,
                                        final_mask, result)
    # The result should be [0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0]
    del ctxbl
コード例 #6
0
def test_complement():
    n = 1024
    dim = (n, )
    data = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_INT32, dim)
    mask = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_BOOL, dim)
    lower = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_INT32, (0, ))
    upper = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_INT32,
                                           (2100000000, ))
    result = libsakurapy.set_true_int_in_ranges_exclusive(
        n, data, 1, lower, upper, mask)
    del lower, upper, data, result

    data = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, dim)
    result = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, dim)
    libsakurapy.complement_masked_value_float(n, data, mask, result)
    del data, mask, result
コード例 #7
0
def test_convolve1D():
    ndata = 10
    width = 3
    y = [0.] * ndata
    y[5] = 1.0
    ctx1D = libsakurapy.create_convolve1D_context(
        ndata, libsakurapy.CONVOLVE1D_KERNEL_TYPE_GAUSSIAN, width, True)
    data = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, y)
    result = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (ndata, ))
    out = libsakurapy.convolve1D(ctx1D, ndata, data, result)
    del ctx1D, data, result, out
コード例 #8
0
def test_interpolate():
    # interpolate in Y-axis
    nchan = 4
    yin = [0., 1.]
    yout = [0.75]
    zin = [float(6.0)] * nchan + [float(5.0)] * nchan
    nbase = len(yin)
    npos = len(yout)
    order = 1
    zindata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, zin)
    yindata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_DOUBLE, yin)
    youtdata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_DOUBLE, yout)
    zoutdata = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (npos, nchan))
    result = libsakurapy.interpolate_float_yaxis(
        libsakurapy.INTERPOLATION_METHOD_LINEAR, order, nbase, yindata, nchan,
        zindata, npos, youtdata, zoutdata)
    # the result should be [5.25]*nchan
    del yin, yout, zin, zindata, yindata, youtdata, zoutdata
    # interpolate in X-axis
    xin = [0., 1.]
    xout = [0.25]
    nbase = len(xin)
    npos = len(xout)
    nrow = 3
    zin = [float(6.0), float(5.0)] * nrow
    order = 1
    zindata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, zin)
    xindata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_DOUBLE, xin)
    xoutdata = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_DOUBLE, xout)
    zoutdata = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_FLOAT, (npos, nrow))
    result = libsakurapy.interpolate_float_xaxis(
        libsakurapy.INTERPOLATION_METHOD_LINEAR, order, nbase, xindata, nrow,
        zindata, npos, xoutdata, zoutdata)
コード例 #9
0
def test_range():
    n = 1024 * 1024 * 16
    dim = (n, )
    data = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_INT32, dim)
    mask = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_BOOL, dim)
    lower = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_INT32,
                                           (1, 100, 200))
    upper = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_INT32,
                                           (10, 110, 210))
    result = libsakurapy.set_true_int_in_ranges_exclusive(
        n, data, 3, lower, upper, mask)
    del n, dim, data, mask, lower, upper, result
    # Test set_true_float_in_ranges_exclusive
    dataf = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT,
                                           [0., 2., 1., 3.])
    ndata = libsakurapy.get_elements_of_aligned_buffer(dataf)[0]
    maskf = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_BOOL,
                                           [True, True, True, True])
    lowerf = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, [0.5])
    upperf = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_FLOAT, [2.5])
    result = libsakurapy.set_true_float_in_ranges_exclusive(
        ndata, dataf, 1, lowerf, upperf, maskf)
    del dataf, ndata, maskf, lowerf, upperf, result
コード例 #10
0
def test_logical():
    n = 1024 * 1024 * 16
    dim = (n, )

    buf = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_FLOAT,
                                                       dim)
    bl = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_BOOL,
                                                      dim)
    libsakurapy.set_false_float_if_nan_or_inf(n, buf, bl)
    del buf
    del bl

    ui8 = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_INT8,
                                                       dim)
    bl = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_BOOL,
                                                      dim)
    libsakurapy.uint8_to_bool(n, ui8, bl)
    ui32 = libsakurapy.new_uninitialized_aligned_buffer(
        libsakurapy.TYPE_INT32, dim)
    libsakurapy.uint32_to_bool(n, ui32, bl)
    bl2 = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_BOOL,
                                                       dim)
    libsakurapy.invert_bool(n, bl, bl2)
    libsakurapy.invert_bool(n, bl, bl)  # in place
    del ui8
    del ui32
    del bl
    del bl2

    src1 = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_BOOL,
                                          (True, False, True, False))
    src2 = libsakurapy.new_aligned_buffer(libsakurapy.TYPE_BOOL,
                                          (True, True, False, False))
    dst = libsakurapy.new_uninitialized_aligned_buffer(libsakurapy.TYPE_BOOL,
                                                       (4, ))
    out = libsakurapy.logical_and(4, src1, src2, dst)