コード例 #1
0
ファイル: test_libtfr.py プロジェクト: mtoqeerpk/libtfr
def test_fgrid():
    Fs = 100
    nfft = 256
    f, idx = libtfr.fgrid(Fs, nfft)
    assert_equal(f.size, idx.size)
    assert_equal(f[-1], Fs / 2)
    f, idx = libtfr.fgrid(Fs, nfft, (10, 40))
    assert_true(f[0] >= 10)
    assert_true(f[-1] <= 40)
コード例 #2
0
ファイル: test_libtfr.py プロジェクト: melizalab/libtfr
def test_fgrid():
    Fs = 100
    nfft = 256
    f, idx = libtfr.fgrid(Fs, nfft)
    assert_equal(f.size, idx.size)
    assert_equal(f[-1], Fs / 2)
    f, idx = libtfr.fgrid(Fs, nfft, (10, 40))
    assert_true(f[0] >= 10)
    assert_true(f[-1] <= 40)
コード例 #3
0
def load_sound_stims(files,
                     root="",
                     windowtime=0.016,
                     ovl=0.0016,
                     f_min=500,
                     f_max=8000,
                     gammatone=False,
                     dsample=10,
                     sres=15,
                     compress=0):
    stims = []
    durations = []

    for f in files:
        Fs, wave = read(root + f)
        duration = int(1000 * len(wave) / Fs)
        durations.append(duration)
        if gammatone:
            Pxx = gg.gtgram(wave, Fs, windowtime, ovl, sres, f_min)
            Pxx = np.log10(Pxx)

        else:
            w = np.hanning(int(windowtime * Fs))
            Pxx = libtfr.stft(wave, w, int(w.size * .1))
            freqs, ind = libtfr.fgrid(Fs, w.size, [f_min, f_max])
            Pxx = Pxx[ind, :]
            Pxx = np.log10(Pxx + compress)
            Pxx = resample(Pxx, sres)
        Pxx = resample(Pxx, duration / dsample, axis=1)
        stims.append(Pxx)
    return stims, durations
コード例 #4
0
ファイル: plotutils.py プロジェクト: margoliashlab/dlab
def specgram(x, NFFT=256, shift=128, Fs=1.0, drange=60,
             ax=None, cmap=mplt.cm.gray_r, **kwargs):
    from numpy import hanning
    from libtfr import stft, fgrid, tgrid, dynamic_range
    w = hanning(NFFT)
    S = stft(x, w, shift)
    F,ind = fgrid(Fs,NFFT,(0,Fs/2))
    T = tgrid(x.size, Fs, shift)
    S = nx.log10(dynamic_range(S, drange))
    if ax is None: ax = mplt.gca()
    ax.imshow(S, extent = (T[0],T[-1],F[0]-0.01,F[-1]), cmap=cmap, **kwargs)
    return S
コード例 #5
0
ファイル: plotutils.py プロジェクト: melizalab/dlab
def specgram(x, NFFT=256, shift=128, Fs=1.0, drange=60,
             ax=None, cmap=mplt.cm.gray_r, **kwargs):
    from numpy import hanning
    from libtfr import stft, fgrid, tgrid, dynamic_range
    w = hanning(NFFT)
    S = stft(x, w, shift)
    F,ind = fgrid(Fs,NFFT,(0,Fs/2))
    T = tgrid(x.size, Fs, shift)
    S = nx.log10(dynamic_range(S, drange))
    if ax is None: ax = mplt.gca()
    ax.imshow(S, extent = (T[0],T[-1],F[0]-0.01,F[-1]), cmap=cmap, **kwargs)
    return S
コード例 #6
0
ファイル: reconstruct.py プロジェクト: bjoring/reconstruction
def load_stimulus(path,
                  window,
                  step,
                  f_min=0.5,
                  f_max=8.0,
                  f_count=30,
                  compress=1,
                  gammatone=False,
                  **kwargs):
    """Load sound stimulus and calculate spectrotemporal representation.

    Parameters:

    path: location of wave file
    window: duration of window (in ms)
    step: window step (in ms)
    f_min: minimum frequency (in kHz)
    f_max: maximum frequency (in kHz)
    f_count: number of frequency bins
    gammatone: if True, use gammatone filterbank

    Returns spectrogram, duration (ms)
    """
    import ewave
    fp = ewave.open(path, "r")
    Fs = fp.sampling_rate / 1000.
    osc = ewave.rescale(fp.read(), 'h')
    if gammatone:
        import gammatone.gtgram as gg
        Pxx = gg.gtgram(osc, Fs * 1000, window / 1000, step / 1000, f_count,
                        f_min * 1000)
    else:
        import libtfr
        # nfft based on desired number of channels btw f_min and f_max
        nfft = int(f_count / (f_max - f_min) * Fs)
        npoints = int(Fs * window)
        if nfft < npoints:
            raise ValueError(
                "window size {} ({} points) too large for desired freq resolution {}. "
                "Decrease to {} ms or increase f_count.".format(
                    window, f_count, npoints, nfft / Fs))

        nstep = int(Fs * step)
        taper = np.hanning(npoints)
        mfft = libtfr.mfft_precalc(nfft, taper)
        Pxx = mfft.mtspec(osc, nstep)
        freqs, ind = libtfr.fgrid(Fs, nfft, [f_min, f_max])
        Pxx = Pxx[ind, :]
    if compress is not None:
        Pxx = np.log10(Pxx + compress) - np.log10(compress)
    return Pxx, Pxx.shape[1] * step
コード例 #7
0
ファイル: pointproc.py プロジェクト: melizalab/dlab
def mtfft(tl, **kwargs):
    """
    Multitaper fourier transform from point process times

    [J,Nsp,f] = mtfftpt(tl, **kwargs)

    Input:
          tl          ragged array of event times
    Optional keyword arguments:
          NW          time-bandwidth parameter for DPSS tapers (default 3)
          k           number of DPSS tapers to use (default nw*2-1)
          time_range  the range of times to analyze (default is to use range of tl)
          Fs          the frequency resolution (default 1)
          fpass       frequency band to be used in the calculation in the form
                      (fmin, fmax). Default (0, Fs/2)
          nfft        number of frequency bins for transform

    Output:
          J       complex spectrum with dimensions (freq x chan x tapers)
          Nsp     total spike count in each trial, with dimension (chan,)
          f       frequency grid, with dimension (freq,)

    Note on units: if the units of the data are T, the corresponding frequency units
                   are in 1/T (sec -> Hz; msec -> kHz)
    """
    from libtfr import fgrid, dpss
    from numpy import arange, sqrt
    import toelis

    NW = kwargs.get('NW', 3)
    K = kwargs.get('k', NW*2-1)
    Fs = kwargs.get('Fs', 1)
    fpass = kwargs.get('fpass', (0, Fs/2.))

    dt = 1./Fs
    try:
        mintime, maxtime = kwargs['time_range']
        t = arange(mintime, maxtime, dt)
    except KeyError:
        mintime, maxtime = toelis.range(tl)
        # pad around spike times to avoid edge effects
        t = arange(mintime-dt, maxtime+2*dt, dt)

    N = len(t)
    nfft = kwargs.get('nfft', N)
    f,findx = fgrid(Fs, nfft, fpass)
    tapers = dpss(N, NW, K)[0].T * sqrt(Fs)

    J, Nsp = _mtfft(tl, tapers, nfft, t, f, findx)
    return J, Nsp, f
コード例 #8
0
def mtfft(tl, **kwargs):
    """
    Multitaper fourier transform from point process times

    [J,Nsp,f] = mtfftpt(tl, **kwargs)

    Input:
          tl          ragged array of event times
    Optional keyword arguments:
          NW          time-bandwidth parameter for DPSS tapers (default 3)
          k           number of DPSS tapers to use (default nw*2-1)
          time_range  the range of times to analyze (default is to use range of tl)
          Fs          the frequency resolution (default 1)
          fpass       frequency band to be used in the calculation in the form
                      (fmin, fmax). Default (0, Fs/2)
          nfft        number of frequency bins for transform

    Output:
          J       complex spectrum with dimensions (freq x chan x tapers)
          Nsp     total spike count in each trial, with dimension (chan,)
          f       frequency grid, with dimension (freq,)

    Note on units: if the units of the data are T, the corresponding frequency units
                   are in 1/T (sec -> Hz; msec -> kHz)
    """
    from libtfr import fgrid, dpss
    from numpy import arange, sqrt
    import toelis

    NW = kwargs.get('NW', 3)
    K = kwargs.get('k', NW * 2 - 1)
    Fs = kwargs.get('Fs', 1)
    fpass = kwargs.get('fpass', (0, Fs / 2.))

    dt = 1. / Fs
    try:
        mintime, maxtime = kwargs['time_range']
        t = arange(mintime, maxtime, dt)
    except KeyError:
        mintime, maxtime = toelis.range(tl)
        # pad around spike times to avoid edge effects
        t = arange(mintime - dt, maxtime + 2 * dt, dt)

    N = len(t)
    nfft = kwargs.get('nfft', N)
    f, findx = fgrid(Fs, nfft, fpass)
    tapers = dpss(N, NW, K)[0].T * sqrt(Fs)

    J, Nsp = _mtfft(tl, tapers, nfft, t, f, findx)
    return J, Nsp, f
コード例 #9
0
ファイル: spcc.py プロジェクト: bshaw1975/chirp
    def load_signal(self, locator, dtype='d'):
        """
        Loads the signal and computes the spectrogram.

        dtype: the data type to store the output in. Use
               single-precision floats if needed to reduce storage
               requirements.
        """
        from ewave import wavfile
        from libtfr import fgrid, dynamic_range
        from chirp.common.signal import spectrogram
        from chirp.common.geom import elementlist, masker
        from numpy import linspace, log10

        fp = wavfile(locator)
        signal = fp.read()
        Fs = fp.sampling_rate

        speccr = spectrogram(**self.options)
        # adjust window size to get correct number of frequency bands
        df = 1. * (self.options['freq_range'][1] - self.options['freq_range'][0]) / self.options['nfreq']
        nfft = int(Fs / df)

        spec, extent = speccr.linspect(signal, Fs / 1000, nfft=nfft)
        F, ind = fgrid(Fs, nfft, self.options['freq_range'])   # in Hz
        spec = spec[ind, :]
        T = linspace(extent[0], extent[1], spec.shape[1])      # in ms

        # first convert the spectrogram to its final scale
        if self.options['powscale'].startswith('log'):
            # TODO calculate dynamic range of the signal for non 16 bit PCM?
            spec = log10(dynamic_range(spec, 96))
            # recenter spectrogram
            if self.options['subtract_mean']:
                spec -= spec.mean()

        if self.options['mask'] != 'none':
            eblfile = os.path.splitext(locator)[0] + elementlist.default_extension
            if os.path.exists(eblfile):
                mask = elementlist.read(eblfile)
                spec = masker(boxmask=self.options['mask'] == 'box').cut(spec, mask, T, F / 1000.)

        return spec.astype(dtype)
コード例 #10
0
def specgram(signal, sampling_rate, nfft=256, shift=128, compress=1):
    """
    Calculate a spectrogram of signal.

    Parameters:
    signal - the input signal (needs to be a 1D array)
    nfft   - the window size, in points
    shift  - how much to shift the window in each frame, in points
    sampling_rate - the number of samples per second in the signal
    compress - how much to compress the spectrogram. Effectively sets the floor of the
               spectrogram at log10(compress)

    Returns: the spectrogram, the frequency grid, and the time grid

    """
    from numpy import log10
    import libtfr
    # generate a transform object
    D = libtfr.mfft_dpss(nfft, 3, 5, nfft)
    # calculate the power spectrogram
    P = D.mtspec(signal, shift)
    freq, find = libtfr.fgrid(sampling_rate, nfft)
    bins = libtfr.tgrid(P, sampling_rate, shift)
    return (log10(P + compress) - log10(compress), freq, bins)
コード例 #11
0
ファイル: pointproc.py プロジェクト: melizalab/dlab
def mtstft(tl, window, step, **kwargs):
    """
    Multitaper short time fourier transform from point process times

    [J,Nsp,f,t] = mtstft(tl, window, step**kwargs)

    Input:
          tl          ragged array of event times
          window      duration of short time analysis window
          step        step size between windows
    Optional keyword arguments:
          NW          time-bandwidth parameter for DPSS tapers (default 3)
          k           number of DPSS tapers to use (default nw*2-1)
          time_range  the range of times to analyze (default is to use range of tl)
          Fs          the frequency resolution (default 1)
          fpass       frequency band to be used in the calculation in the form
                      (fmin, fmax). Default (0, Fs/2)
          nfft        number of frequency bins for transform

    Output:
          J       complex spectrum with dimensions (freq x time x tapers x chan)
          Nsp     total spike count in each trial, with dimension (time, chan)
          f       frequency grid, with dimension (freq,)
          t       time grid, with dimension (time,)

    Note on units: if the units of the data are T, the corresponding frequency units
                   are in 1/T (sec -> Hz; msec -> kHz)
    """
    from libtfr import fgrid, dpss
    from numpy import arange, sqrt, zeros
    import toelis

    NW = kwargs.get('NW', 3)
    K = kwargs.get('k', NW*2-1)
    Fs = kwargs.get('Fs', 1)
    dt = 1./ Fs
    fpass = kwargs.get('fpass', (0, Fs/2.))

    C = len(tl)
    twin = arange(0, window, dt)
    N = len(twin)
    nfft = kwargs.get('nfft', N)
    f,findx = fgrid(Fs, nfft, fpass)
    tapers = dpss(N, NW, K)[0].T * sqrt(Fs)

    try:
        mintime, maxtime = kwargs['time_range']
    except KeyError:
        mintime, maxtime = toelis.range(tl)
        # pad around spikes
        mintime -= dt
        maxtime += 2*dt
    tgrid = arange(mintime, maxtime, step)

    J = zeros((f.size, tgrid.size, K, C), dtype='D')
    Nsp = zeros((tgrid.size, C), dtype='i')
    for i, offset in enumerate(tgrid):
        j,n = _mtfft(tl, tapers, nfft, twin + offset, f, findx)
        J[:,i,:,:] = j
        Nsp[i,:] = n

    return J, Nsp, f, tgrid
コード例 #12
0
def mtstft(tl, window, step, **kwargs):
    """
    Multitaper short time fourier transform from point process times

    [J,Nsp,f,t] = mtstft(tl, window, step**kwargs)

    Input:
          tl          ragged array of event times
          window      duration of short time analysis window
          step        step size between windows
    Optional keyword arguments:
          NW          time-bandwidth parameter for DPSS tapers (default 3)
          k           number of DPSS tapers to use (default nw*2-1)
          time_range  the range of times to analyze (default is to use range of tl)
          Fs          the frequency resolution (default 1)
          fpass       frequency band to be used in the calculation in the form
                      (fmin, fmax). Default (0, Fs/2)
          nfft        number of frequency bins for transform

    Output:
          J       complex spectrum with dimensions (freq x time x tapers x chan)
          Nsp     total spike count in each trial, with dimension (time, chan)
          f       frequency grid, with dimension (freq,)
          t       time grid, with dimension (time,)

    Note on units: if the units of the data are T, the corresponding frequency units
                   are in 1/T (sec -> Hz; msec -> kHz)
    """
    from libtfr import fgrid, dpss
    from numpy import arange, sqrt, zeros
    import toelis

    NW = kwargs.get('NW', 3)
    K = int(kwargs.get('k', NW * 2 - 1))
    Fs = kwargs.get('Fs', 1)
    dt = 1. / Fs
    fpass = kwargs.get('fpass', (0, Fs / 2.))

    C = len(tl)
    twin = arange(0, window, dt)
    N = len(twin)
    nfft = kwargs.get('nfft', N)
    f, findx = fgrid(Fs, nfft, fpass)
    tapers = dpss(N, NW, K)[0].T * sqrt(Fs)

    try:
        mintime, maxtime = kwargs['time_range']
    except KeyError:
        mintime, maxtime = toelis.range(tl)
        # pad around spikes
        mintime -= dt
        maxtime += 2 * dt
    tgrid = arange(mintime, maxtime, step)

    J = zeros((f.size, tgrid.size, K, C), dtype='D')
    Nsp = zeros((tgrid.size, C), dtype='i')
    for i, offset in enumerate(tgrid):
        j, n = _mtfft(tl, tapers, nfft, twin + offset, f, findx)
        J[:, i, :, :] = j
        Nsp[i, :] = n

    return J, Nsp, f, tgrid