def test_spherical_quadrature(): """ Testing spherical quadrature rule versus numerical integration. """ b = 8 # 10 # Create grids on the sphere x_gl = S2.meshgrid(b=b, grid_type='Gauss-Legendre') x_cc = S2.meshgrid(b=b, grid_type='Clenshaw-Curtis') x_soft = S2.meshgrid(b=b, grid_type='SOFT') x_gl = np.c_[x_gl[0][..., None], x_gl[1][..., None]] x_cc = np.c_[x_cc[0][..., None], x_cc[1][..., None]] x_soft = np.c_[x_soft[0][..., None], x_soft[1][..., None]] # Compute quadrature weights w_gl = S2.quadrature_weights(b=b, grid_type='Gauss-Legendre') w_cc = S2.quadrature_weights(b=b, grid_type='Clenshaw-Curtis') w_soft = S2.quadrature_weights(b=b, grid_type='SOFT') # Define a polynomial function, to be evaluated at one point or at an array of points def f1a(xs): xc = S2.change_coordinates(coords=xs, p_from='S', p_to='C') return xc[..., 0]**2 * xc[..., 1] - 1.4 * xc[..., 2] * xc[ ..., 1]**3 + xc[..., 1] - xc[..., 2]**2 + 2. def f1(theta, phi): xs = np.array([theta, phi]) return f1a(xs) # Obtain the "true" value of the integral of the function over the sphere, using scipy's numerical integration # routines i1 = S2.integrate(f1, normalize=False) # Compute the integral using the quadrature formulae # i1_gl_w = (w_gl * f1a(x_gl)).sum() i1_gl_w = S2.integrate_quad(f1a(x_gl), grid_type='Gauss-Legendre', normalize=False, w=w_gl) print(i1_gl_w, i1, 'diff:', np.abs(i1_gl_w - i1)) assert np.isclose(np.abs(i1_gl_w - i1), 0.0) # i1_cc_w = (w_cc * f1a(x_cc)).sum() i1_cc_w = S2.integrate_quad(f1a(x_cc), grid_type='Clenshaw-Curtis', normalize=False, w=w_cc) print(i1_cc_w, i1, 'diff:', np.abs(i1_cc_w - i1)) assert np.isclose(np.abs(i1_cc_w - i1), 0.0) i1_soft_w = (w_soft * f1a(x_soft)).sum() print(i1_soft_w, i1, 'diff:', np.abs(i1_soft_w - i1)) print(i1_soft_w) print(i1)
def get_projection_grid(b, grid_type="Driscoll-Healy"): theta, phi = S2.meshgrid(b=b, grid_type=grid_type) x_ = np.sin(theta) * np.cos(phi) y_ = np.sin(theta) * np.sin(phi) z_ = np.cos(theta) #pdb.set_trace() return x_, y_, z_
def naive_conv(l1=1, m1=1, l2=1, m2=1, g_parameterization='EA313'): f1 = lambda t, p: sh(l=l1, m=m1, theta=t, phi=p, field='real', normalization='quantum', condon_shortley=True) f2 = lambda t, p: sh(l=l2, m=m2, theta=t, phi=p, field='real', normalization='quantum', condon_shortley=True) theta, phi = S2.meshgrid(b=3, grid_type='Gauss-Legendre') f1_grid = f1(theta, phi) f2_grid = f2(theta, phi) alpha, beta, gamma = S3.meshgrid(b=3, grid_type='SOFT') # TODO check convention f12_grid = np.zeros_like(alpha) for i in range(alpha.shape[0]): for j in range(alpha.shape[1]): for k in range(alpha.shape[2]): f12_grid[i, j, k] = naive_S2_conv_v2(f1, f2, alpha[i, j, k], beta[i, j, k], gamma[i, j, k], g_parameterization) print(i, j, k, f12_grid[i, j, k]) return f1_grid, f2_grid, f12_grid
def get_grid(b, radius, grid_type="Driscoll-Healy"): """ returns the spherical grid in euclidean coordinates, which, to be specify, for each image in range(train_size): for each point in range(num_points): generate the 2b * 2b S2 points , each is (x, y, z) therefore returns tensor (train_size * num_points, 2b * 2b, 3) :param b: the number of grids on the sphere :param radius: the radius of each sphere :param grid_type: "Driscoll-Healy" :return: tensor (batch_size, num_points, 4 * b * b, 3) """ # theta in shape (2b, 2b), range [0, pi]; phi range [0, 2 * pi] theta, phi = S2.meshgrid(b=b, grid_type=grid_type) theta = torch.from_numpy(theta).cuda() phi = torch.from_numpy(phi).cuda() x_ = radius * torch.sin(theta) * torch.cos(phi) """x will be reshaped to have one dimension of 1, then can broadcast look this link for more information: https://pytorch.org/docs/stable/notes/broadcasting.html """ x = x_.reshape((1, 4 * b * b)) # tensor (1, 4 * b * b) # same for y and z y_ = radius * torch.sin(theta) * torch.sin(phi) y = y_.reshape((1, 4 * b * b)) z_ = radius * torch.cos(theta) z = z_.reshape((1, 4 * b * b)) grid = torch.cat((x, y, z), dim=0) # (3, 4 * b * b) assert grid.shape == torch.Size([3, 4 * b * b]) # grid = grid.reshape((1, 4 * b * b, 3)) return grid
def test_S2FFT_NFFT(): """ Testing S2FFT NFFT """ b = 8 convention = 'Gauss-Legendre' #convention = 'Clenshaw-Curtis' x = S2.meshgrid(b=b, grid_type=convention) print(x[0].shape, x[1].shape) x = np.c_[x[0][..., None], x[1][..., None]]#.reshape(-1, 2) print(x.shape) x = x.reshape(-1, 2) w = S2.quadrature_weights(b=b, grid_type=convention).flatten() F = S2FFT_NFFT(L_max=b, x=x, w=w) for l in range(0, b): for m in range(-l, l + 1): #l = b; m = b f = sh(l, m, x[..., 0], x[..., 1], field='real', normalization='quantum', condon_shortley=True) #f2 = np.random.randn(*f.shape) print(f) f_hat = F.analyze(f) print(np.round(f_hat, 3)) f_reconst = F.synthesize(f_hat) #print np.round(f, 3) print(np.round(f_reconst, 3)) #print np.round(f/f_reconst, 3) print(np.abs(f-f_reconst).sum()) assert np.isclose(np.abs(f-f_reconst).sum(), 0.) print(np.round(f_hat, 3)) assert np.isclose(f_hat[l ** 2 + l + m], 1.) #assert False
def get_projection_grid(b, grid_type="Driscoll-Healy"): ''' returns the spherical grid in euclidean coordinates, where the sphere's center is moved to (0, 0, 1)''' theta, phi = S2.meshgrid(b=b, grid_type=grid_type) x_ = np.sin(theta) * np.cos(phi) y_ = np.sin(theta) * np.sin(phi) z_ = np.cos(theta) return x_, y_, z_
def make_sgrid(b): theta, phi = S2.meshgrid(b=b, grid_type='Driscoll-Healy') sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]], p_from='S', p_to='C') sgrid = sgrid.reshape((-1, 3)) return sgrid
def make_sgrid(b): from lie_learn.spaces import S2 theta, phi = S2.meshgrid(b=b, grid_type='SOFT') sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]], p_from='S', p_to='C') sgrid = sgrid.reshape((-1, 3)) return (theta, phi), sgrid
def make_sgrid(b, alpha, beta, gamma): from lie_learn.spaces import S2 theta, phi = S2.meshgrid(b=b, grid_type='SOFT') sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]], p_from='S', p_to='C') sgrid = sgrid.reshape((-1, 3)) R = rotmat(alpha, beta, gamma, hom_coord=False) sgrid = np.einsum('ij,nj->ni', R, sgrid) return sgrid
def make_sgrid(b, alpha, beta, gamma, grid_type): theta, phi = S2.meshgrid(b=b, grid_type=grid_type) sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]], p_from='S', p_to='C') sgrid = sgrid.reshape((-1, 3)) R = mesh_op.rotmat(alpha, beta, gamma, hom_coord=False) sgrid = np.einsum('ij,nj->ni', R, sgrid) return sgrid
def test_S2_FT_Naive(): L_max = 6 for grid_type in ('Gauss-Legendre', 'Clenshaw-Curtis'): theta, phi = S2.meshgrid(b=L_max + 1, grid_type=grid_type) for field in ('real', 'complex'): for normalization in ( 'quantum', 'seismology' ): # TODO Others should work but are not normalized for condon_shortley in ('cs', 'nocs'): fft = S2_FT_Naive(L_max, grid_type=grid_type, field=field, normalization=normalization, condon_shortley=condon_shortley) for l in range(L_max): for m in range(-l, l + 1): y_true = sh( l, m, theta, phi, field=field, normalization=normalization, condon_shortley=condon_shortley == 'cs') y_hat = fft.analyze(y_true) # The flat index for (l, m) is l^2 + l + m # Before the harmonics of degree l, there are this many harmonics: # sum_{i=0}^{l-1} 2i+1 = l^2 # There are 2l+1 harmonics of degree l, with order m=0 at the center, # so the m-th harmonic of degree is at l + m within the block of degree l. y_hat_true = np.zeros_like(y_hat) y_hat_true[l**2 + l + m] = 1 y = fft.synthesize(y_hat_true) diff = np.sum(np.abs(y_hat - y_hat_true)) print(grid_type, field, normalization, condon_shortley, l, m, diff) assert np.isclose(diff, 0.) diff = np.sum(np.abs(y - y_true)) print(grid_type, field, normalization, condon_shortley, l, m, diff) assert np.isclose(diff, 0.)
def get_projection_grid(b, grid_type="Driscoll-Healy"): """ returns the spherical grid in euclidean coordinates, where the sphere's center is moved to (0, 0, 1) """ theta, phi = S2.meshgrid(b=b, grid_type=grid_type) grid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]], p_from='S', p_to='C') grid = grid.reshape((-1, 3)).astype(np.float32) return grid
def get_grids(b, num_grids, base_radius=1, center=[0, 0, 0], grid_type="Driscoll-Healy"): """ :param b: the number of grids on the sphere :param base_radius: the radius of each sphere :param grid_type: "Driscoll-Healy" :param num_grids: number of grids :return: [(radius, tensor([2b, 2b, 3])) * num_grids] """ grids = list() radiuses = [ round(i, 2) for i in list(np.linspace(0, base_radius, num_grids + 1))[1:] ] # Each grid has differet radius, the radiuses are distributed uniformly based on number for radius in radiuses: # theta in shape (2b, 2b), range [0, pi]; phi range [0, 2 * pi] theta, phi = S2.meshgrid(b=b, grid_type=grid_type) theta = torch.from_numpy(theta) phi = torch.from_numpy(phi) # x will be reshaped to have one dimension of 1, then can broadcast # look this link for more information: https://pytorch.org/docs/stable/notes/broadcasting.html x_ = radius * torch.sin(theta) * torch.cos(phi) x = x_.reshape((1, 4 * b * b)) # tensor -> [1, 4 * b * b] x = x + center[0] y_ = radius * torch.sin(theta) * torch.sin(phi) y = y_.reshape((1, 4 * b * b)) y = y + center[1] z_ = radius * torch.cos(theta) z = z_.reshape((1, 4 * b * b)) z = z + center[2] grid = torch.cat((x, y, z), dim=0) # -> [3, 4b^2] grid = grid.transpose(0, 1) # -> [4b^2, 3] grid = grid.view(2 * b, 2 * b, 3) # -> [2b, 2b, 3] grid = grid.float().cuda() grids.append((radius, grid)) assert len(grids) == num_grids return grids
def get_projection_grid(b, images, radius, grid_type="Driscoll-Healy"): """ returns the spherical grid in euclidean coordinates, which, to be specify, for each image in range(train_size): for each point in range(num_points): generate the 2b * 2b S2 points , each is (x, y, z) therefore returns tensor (train_size * num_points, 2b * 2b, 3) :param b: the number of grids on the sphere :param images: tensor (batch_size, num_points, 3) :param radius: the radius of each sphere :param grid_type: "Driscoll-Healy" :return: tensor (batch_size, num_points, 4 * b * b, 3) """ assert type(images) == torch.Tensor assert len(images.shape) == 3 assert images.shape[-1] == 3 batch_size = images.shape[0] num_points = images.shape[1] images = images.reshape((-1, 3)) # -> (B * 512, 3) # theta in shape (2b, 2b), range [0, pi]; phi range [0, 2 * pi] theta, phi = S2.meshgrid(b=b, grid_type=grid_type) theta = torch.from_numpy(theta).cuda() phi = torch.from_numpy(phi).cuda() x_ = radius * torch.sin(theta) * torch.cos(phi) """x will be reshaped to have one dimension of 1, then can broadcast look this link for more information: https://pytorch.org/docs/stable/notes/broadcasting.html """ x = x_.reshape((1, 4 * b * b)) # tensor (1, 4 * b * b) px = images[:, 0].reshape((-1, 1)) # tensor (batch_size * 512, 1) x = x + px # (batch_size * num_points, 4 * b * b) # same for y and z y_ = radius * torch.sin(theta) * torch.sin(phi) y = y_.reshape((1, 4 * b * b)) py = images[:, 1].reshape((-1, 1)) y = y + py z_ = radius * torch.cos(theta) z = z_.reshape((1, 4 * b * b)) pz = images[:, 2].reshape((-1, 1)) z = z + pz # give x, y, z extra dimension, so that it can concat by that dimension x = torch.unsqueeze(x, 2) # (B * 512, 4 * b * b, 1) y = torch.unsqueeze(y, 2) z = torch.unsqueeze(z, 2) grid = torch.cat((x, y, z), 2) # (B * 512, 4 * b * b, 3) grid = grid.reshape((batch_size, num_points, 4 * b * b, 3)) return grid
def __init__(self, L_max, grid_type='Gauss-Legendre', field='real', normalization='quantum', condon_shortley='cs'): super().__init__() self.b = L_max + 1 # Compute a grid of spatial sampling points and associated quadrature weights beta, alpha = S2.meshgrid(b=self.b, grid_type=grid_type) self.w = S2.quadrature_weights(b=self.b, grid_type=grid_type) self.spatial_grid_shape = beta.shape self.num_spatial_points = beta.size # Determine for which degree and order we want the spherical harmonics irreps = np.arange( self.b ) # TODO find out upper limit for exact integration for each grid type ls = [[ls] * (2 * ls + 1) for ls in irreps] ls = np.array([ll for sublist in ls for ll in sublist]) # 0, 1, 1, 1, 2, 2, 2, 2, 2, ... ms = [list(range(-ls, ls + 1)) for ls in irreps] ms = np.array([mm for sublist in ms for mm in sublist]) # 0, -1, 0, 1, -2, -1, 0, 1, 2, ... self.num_spectral_points = ms.size # This equals sum_{l=0}^{b-1} 2l+1 = b^2 # In one shot, sample the spherical harmonics at all spectral (l, m) and spatial (beta, alpha) coordinates self.Y = sh(ls[None, None, :], ms[None, None, :], beta[:, :, None], alpha[:, :, None], field=field, normalization=normalization, condon_shortley=condon_shortley == 'cs') # Convert to a matrix self.Ymat = self.Y.reshape(self.num_spatial_points, self.num_spectral_points)
def naive_S2_conv_v2(f1, f2, alpha, beta, gamma, g_parameterization='EA323'): """ Compute int_S^2 f1(x) f2(g^{-1} x)* dx, where x = (theta, phi) is a point on the sphere S^2, and g = (alpha, beta, gamma) is a point in SO(3) in Euler angle parameterization :param f1, f2: functions to be convolved :param alpha, beta, gamma: the rotation at which to evaluate the result of convolution :return: """ theta, phi = S2.meshgrid(b=3, grid_type='Gauss-Legendre') w = S2.quadrature_weights(b=3, grid_type='Gauss-Legendre') print(theta.shape, phi.shape) s2_coords = np.c_[theta[..., None], phi[..., None]] print(s2_coords.shape) r3_coords = np.c_[theta[..., None], phi[..., None], np.ones_like(theta)[..., None]] # g_inv = SO3.invert((alpha, beta, gamma), parameterization=g_parameterization) # g_inv = (-gamma, -beta, -alpha) g_inv = (alpha, beta, gamma) # wrong ginvx = SO3.transform_r3(g=g_inv, x=r3_coords, g_parameterization=g_parameterization, x_parameterization='S') print(ginvx.shape) g_inv_theta = ginvx[..., 0] g_inv_phi = ginvx[..., 1] g_inv_r = ginvx[..., 2] print(g_inv_theta, g_inv_phi, g_inv_r) f1_grid = f1(theta, phi) f2_grid = f2(g_inv_theta, g_inv_phi) print(f1_grid.shape, f2_grid.shape, w.shape) return np.sum(f1_grid * f2_grid * w)
def compare_naive_and_spectral_conv(): f1 = lambda t, p: sh(l=2, m=1, theta=t, phi=p, field='real', normalization='quantum', condon_shortley=True) f2 = lambda t, p: sh(l=2, m=1, theta=t, phi=p, field='real', normalization='quantum', condon_shortley=True) theta, phi = S2.meshgrid(b=4, grid_type='Gauss-Legendre') f1_grid = f1(theta, phi) f2_grid = f2(theta, phi) alpha, beta, gamma = S3.meshgrid(b=4, grid_type='SOFT') # TODO check convention f12_grid_spectral = spectral_S2_conv(f1_grid, f2_grid, s2_fft=None, so3_fft=None) f12_grid = np.zeros_like(alpha) for i in range(alpha.shape[0]): for j in range(alpha.shape[1]): for k in range(alpha.shape[2]): f12_grid[i, j, k] = naive_S2_conv(f1, f2, alpha[i, j, k], beta[i, j, k], gamma[i, j, k]) print(i, j, k, f12_grid[i, j, k]) return f1_grid, f2_grid, f12_grid, f12_grid_spectral
def test_S2FFT(): L_max = 10 beta, alpha = S2.meshgrid(b=L_max + 1, grid_type='Driscoll-Healy') lt = setup_legendre_transform(b=L_max + 1) lti = setup_legendre_transform_indices(b=L_max + 1) for l in range(L_max): for m in range(-l, l + 1): Y = sh(l, m, beta, alpha, field='complex', normalization='seismology', condon_shortley=True) y_hat = sphere_fft(Y, lt, lti) # The flat index for (l, m) is l^2 + l + m # Before the harmonics of degree l, there are this many harmonics: sum_{i=0}^{l-1} 2i+1 = l^2 # There are 2l+1 harmonics of degree l, with order m=0 at the center, # so the m-th harmonic of degree is at l + m within the block of degree l. y_hat_true = np.zeros_like(y_hat) y_hat_true[l**2 + l + m] = 1 diff = np.sum(np.abs(y_hat - y_hat_true)) nz = 1. - np.isclose(y_hat, 0.) diff_nz = np.sum(np.abs(nz - y_hat_true)) print(l, m, diff, diff_nz) print(np.round(y_hat, 4)) print(y_hat_true) # assert np.isclose(diff, 0.) # TODO make this work print(nz) assert np.isclose(diff_nz, 0.)
def check_orthogonality(L_max=3, grid_type='Gauss-Legendre', field='real', normalization='quantum', condon_shortley=True): theta, phi = S2.meshgrid(b=L_max + 1, grid_type=grid_type) w = S2.quadrature_weights(b=L_max + 1, grid_type=grid_type) for l in range(L_max): for m in range(-l, l + 1): for l2 in range(L_max): for m2 in range(-l2, l2 + 1): Ylm = sh(l, m, theta, phi, field, normalization, condon_shortley) Ylm2 = sh(l2, m2, theta, phi, field, normalization, condon_shortley) dot_numerical = S2.integrate_quad(Ylm * Ylm2.conj(), grid_type=grid_type, normalize=False, w=w) dot_numerical2 = S2.integrate( lambda t, p: sh(l, m, t, p, field, normalization, condon_shortley) * \ sh(l2, m2, t, p, field, normalization, condon_shortley).conj(), normalize=False) sqnorm_analytical = sh_squared_norm(l, normalization, normalized_haar=False) dot_analytical = sqnorm_analytical * (l == l2 and m == m2) print(l, m, l2, m2, field, normalization, condon_shortley, dot_analytical, dot_numerical, dot_numerical2) assert np.isclose(dot_numerical, dot_analytical) assert np.isclose(dot_numerical2, dot_analytical)
def get_projection_grid(bandwidth, grid_type="Driscoll-Healy"): theta, phi = S2.meshgrid(b=bandwidth, grid_type=grid_type) x_ = np.sin(theta) * np.cos(phi) y_ = np.sin(theta) * np.sin(phi) z_ = np.cos(theta) return np.array((x_, y_, z_))