コード例 #1
0
 def _final_iteration_check(env, eval_name_splitted, i):
     if env.iteration == env.end_iteration - 1:
         if verbose:
             print(
                 'Did not meet early stopping. Best iteration is:\n[%d]\t%s'
                 % (best_iter[i] + 1, '\t'.join(
                     [_format_eval_result(x) for x in best_score_list[i]])))
             if first_metric_only:
                 print("Evaluated only: {}".format(eval_name_splitted[-1]))
         raise EarlyStopException(best_iter[i], best_score_list[i])
コード例 #2
0
	def _callback(env):
		if len(start_time) == 0:
			start_time.append(time.time())
		elif len(time_for_each_iteration) == 0:
			time_for_each_iteration.append(time.time() - start_time[0])
			start_time[0] = time.time()
			print("time for each iteration is %f"%time_for_each_iteration[0])
		#elif len(validation_time_for_each_iteration) == 0 and len(env.evaluation_result_list)>1:
		#	validation_time_for_each_iteration.append(time.time() - start_time[0])
		#	print("all time is %f"%validation_time_for_each_iteration[0])
		#	print("time for each evaluation is %f"%(validation_time_for_each_iteration[0]-100*time_for_each_iteration[0]))
		else:
			time_for_each_iteration.append(time.time() - start_time[0])
			start_time[0] = time.time()
			if env.iteration%100 == 0:
				print("time for the current iteration is %f"%time_for_each_iteration[-1])
			if reserved_time is None:
				if config.time_left() < (env.iteration+1)*time_for_each_iteration[0]/3.0:
					raise EarlyStopException(env.iteration, env.evaluation_result_list)
			else:
				if config.time_left() < reserved_time:
					print("Time is not enough. The reserved time for post process is %d"%reserved_time)
					raise EarlyStopException(env.iteration, env.evaluation_result_list)
コード例 #3
0
ファイル: model.py プロジェクト: kazukingh01/kkpackages
 def _callback(env):
     if not dict_eval:
         _init(env)
     for data_name, eval_name, result, _ in env.evaluation_result_list:
         if data_name == "valid_1":
             if dict_eval["best_score"] > result:
                 dict_eval["best_score"] = result
                 dict_eval["eval_name"] = eval_name
                 dict_eval["best_iter"] = env.iteration
                 dict_eval[
                     "best_result_list"] = env.evaluation_result_list
             break
     if isinstance(
             stopping_rounds, int
     ) and env.iteration - dict_eval["best_iter"] >= stopping_rounds:
         logger.info(
             f'early stopping. iteration: {dict_eval["best_iter"]}, score: {dict_eval["best_score"]}'
         )
         raise EarlyStopException(dict_eval["best_iter"],
                                  dict_eval["best_result_list"])
コード例 #4
0
 def _callback(env):
     if not cmp_op:
         _init(env)
     if not enabled[0]:
         return
     # print(f'iteration:{env.iteration}')
     for i in range(len(env.evaluation_result_list)):
         score = env.evaluation_result_list[i][2]
         # print(f'score:{score}')
         if best_score_list[i] is None or cmp_op[i](score, best_score[i]):
             best_score[i] = score
             best_iter[i] = env.iteration
             best_score_list[i] = env.evaluation_result_list
             best_model[i] = env.model.model_to_string()
         # split is needed for "<dataset type> <metric>" case (e.g. "train l1")
         eval_name_splitted = env.evaluation_result_list[i][1].split(" ")
         if first_metric_only and first_metric[0] != eval_name_splitted[-1]:
             continue  # use only the first metric for early stopping
         if ((env.evaluation_result_list[i][0] == "cv_agg"
              and eval_name_splitted[0] == "train"
              or env.evaluation_result_list[i][0]
              == env.model._train_data_name)):
             _final_iteration_check(env, eval_name_splitted, i)
             continue  # train datasets for lgb.cv or sklearn wrapper (underlying lgb.train)
         elif env.iteration - best_iter[i] >= stopping_rounds:
             if verbose:
                 print('Early stopping, best iteration is:\n[%d]\t%s' %
                       (best_iter[i] + 1, '\t'.join([
                           _format_eval_result(x)
                           for x in best_score_list[i]
                       ])))
                 if first_metric_only:
                     print("Evaluated only: {}".format(
                         eval_name_splitted[-1]))
             # recover best model from string
             env.model.model_from_string(best_model[i])
             raise EarlyStopException(best_iter[i], best_score_list[i])
         _final_iteration_check(env, eval_name_splitted, i)
コード例 #5
0
    def _callback(env):
        try_import_lightgbm()
        from lightgbm.callback import _format_eval_result, EarlyStopException
        cur_time = time.time()
        # if verbose:
        #     print(cur_time - timex[0])
        timex[0] = cur_time
        if not cmp_op:
            _init(env)
        if not enabled[0]:
            return
        if train_loss_name is not None:
            train_loss_evals = [
                eval for i, eval in enumerate(env.evaluation_result_list)
                if eval[0] == 'train_set' and eval[1] == train_loss_name
            ]
            train_loss_val = train_loss_evals[0][2]
        else:
            train_loss_val = 0.0
        for i in indices_to_check:
            score = env.evaluation_result_list[i][2]
            if i == indices_to_check[
                    0]:  # TODO: documentation needs to note that we assume 0th index is the 'official' validation performance metric.
                if cmp_op[i] == gt:
                    validation_perf = score
                else:
                    validation_perf = -score
            if best_score_list[i] is None or cmp_op[i](score, best_score[i]):
                best_score[i] = score
                best_iter[i] = env.iteration
                best_score_list[i] = env.evaluation_result_list
                if train_loss_name is not None:
                    best_trainloss[i] = train_loss_val  # same for all i
            elif env.iteration - best_iter[i] >= stopping_rounds:
                if verbose:
                    logger.log(
                        15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                        (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            elif (max_diff
                  is not None) and (abs(score - best_score[i]) > max_diff):
                if verbose:
                    logger.debug('max_diff breached!')
                    logger.debug(str(abs(score - best_score[i])))
                    logger.log(
                        15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                        (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))

                raise EarlyStopException(best_iter[i], best_score_list[i])
            if env.iteration == env.end_iteration - 1:
                if verbose:
                    logger.log(
                        15,
                        'Did not meet early stopping criterion. Best iteration is:\n[%d]\t%s'
                        % (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            if verbose:
                logger.debug(
                    str(env.iteration - best_iter[i],
                        env.evaluation_result_list[i]))
            if manual_stop_file:
                if os.path.exists(manual_stop_file):
                    logger.log(
                        20,
                        'Found manual stop file, early stopping. Best iteration is:\n[%d]\t%s'
                        % (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                    raise EarlyStopException(best_iter[i], best_score_list[i])
        # TODO: This should be moved inside for loop at the start, otherwise it won't record the final iteration
        idx = indices_to_check[0]
        eval_results['best_iter'] = best_iter[
            idx] + 1  # add one to index to align with lightgbm best_iteration instance variable.
        eval_results['best_valperf'] = best_score[
            idx]  # validation performance at round = best_iter
        eval_results['best_trainloss'] = best_trainloss[
            idx]  # training loss at round = best_iter
        reporter(epoch=env.iteration,
                 validation_performance=validation_perf,
                 train_loss=train_loss_val,
                 best_iter_sofar=eval_results['best_iter'],
                 best_valperf_sofar=eval_results['best_valperf'])
コード例 #6
0
    def _callback(env):
        try_import_lightgbm()
        from lightgbm.callback import _format_eval_result, EarlyStopException
        if not cmp_op:
            _init(env)
        if not enabled[0]:
            return

        for i in indices_to_check:
            score = env.evaluation_result_list[i][2]
            if best_score_list[i] is None or cmp_op[i](score, best_score[i]):
                best_score[i] = score
                best_iter[i] = env.iteration
                best_score_list[i] = env.evaluation_result_list
            elif env.iteration - best_iter[i] >= stopping_rounds:
                if verbose:
                    logger.log(
                        15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                        (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            elif (max_diff
                  is not None) and (abs(score - best_score[i]) > max_diff):
                if verbose:
                    logger.debug('max_diff breached!')
                    logger.debug(abs(score - best_score[i]))
                    logger.log(
                        15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                        (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            if env.iteration == env.end_iteration - 1:
                if verbose:
                    logger.log(
                        15,
                        'Did not meet early stopping criterion. Best iteration is:\n[%d]\t%s'
                        % (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            if verbose:
                logger.debug((env.iteration - best_iter[i],
                              env.evaluation_result_list[i]))
        if manual_stop_file:
            if os.path.exists(manual_stop_file):
                i = indices_to_check[0]
                logger.log(
                    20,
                    'Found manual stop file, early stopping. Best iteration is:\n[%d]\t%s'
                    % (best_iter[i] + 1, '\t'.join(
                        [_format_eval_result(x) for x in best_score_list[i]])))
                raise EarlyStopException(best_iter[i], best_score_list[i])

        # TODO: Add toggle parameter to early_stopping to disable this
        # TODO: Identify optimal threshold values for early_stopping based on lack of memory
        if env.iteration % 10 == 0:
            available = psutil.virtual_memory().available
            cur_rss = mem_status.memory_info().rss

            if cur_rss < init_mem_rss[0]:
                init_mem_rss[0] = cur_rss
            estimated_model_size_mb = (cur_rss - init_mem_rss[0]) >> 20
            available_mb = available >> 20

            model_size_memory_ratio = estimated_model_size_mb / available_mb
            if verbose or (model_size_memory_ratio > 0.25):
                logging.debug('Available Memory: ' + str(available_mb) + ' MB')
                logging.debug('Estimated Model Size: ' +
                              str(estimated_model_size_mb) + ' MB')

            early_stop = False
            if model_size_memory_ratio > 1.0:
                logger.warning(
                    'Warning: Large GBM model size may cause OOM error if training continues'
                )
                logger.warning('Available Memory: ' + str(available_mb) +
                               ' MB')
                logger.warning('Estimated GBM model size: ' +
                               str(estimated_model_size_mb) + ' MB')
                early_stop = True

            # TODO: We will want to track size of model as well, even if we early stop before OOM, we will still crash when saving if the model is large enough
            if available_mb < 512:  # Less than 500 MB
                logger.warning(
                    'Warning: Low available memory may cause OOM error if training continues'
                )
                logger.warning('Available Memory: ' + str(available_mb) +
                               ' MB')
                logger.warning('Estimated GBM model size: ' +
                               str(estimated_model_size_mb) + ' MB')
                early_stop = True

            if early_stop:
                logger.warning(
                    'Warning: Early stopped GBM model prior to optimal result to avoid OOM error. Please increase available memory to avoid subpar model quality.'
                )
                logger.log(
                    15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                    (best_iter[0] + 1, '\t'.join(
                        [_format_eval_result(x) for x in best_score_list[0]])))
                raise EarlyStopException(best_iter[0], best_score_list[0])
コード例 #7
0
    def _callback(env):
        try_import_lightgbm()
        from lightgbm.callback import _format_eval_result, EarlyStopException
        if not cmp_op:
            _init(env)
        if not enabled[0]:
            return
        if train_loss_name is not None:
            train_loss_evals = [
                eval for eval in env.evaluation_result_list
                if eval[0] == 'train_set' and eval[1] == train_loss_name
            ]
            train_loss_val = train_loss_evals[0][2]
        else:
            train_loss_val = 0.0
        for i in indices_to_check:
            score = env.evaluation_result_list[i][2]
            if best_score_list[i] is None or cmp_op[i](score, best_score[i]):
                best_score[i] = score
                best_iter[i] = env.iteration
                best_score_list[i] = env.evaluation_result_list
                best_trainloss[i] = train_loss_val
            if reporter is not None:  # Report current best scores for iteration, used in HPO
                if i == indices_to_check[
                        0]:  # TODO: documentation needs to note that we assume 0th index is the 'official' validation performance metric.
                    if cmp_op[i] == gt:
                        validation_perf = score
                    else:
                        validation_perf = -score
                    reporter(epoch=env.iteration + 1,
                             validation_performance=validation_perf,
                             train_loss=best_trainloss[i],
                             best_iter_sofar=best_iter[i] + 1,
                             best_valperf_sofar=best_score[i])
            if env.iteration - best_iter[i] >= stopping_rounds:
                if verbose:
                    logger.log(
                        15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                        (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            elif (max_diff
                  is not None) and (abs(score - best_score[i]) > max_diff):
                if verbose:
                    logger.debug('max_diff breached!')
                    logger.debug(abs(score - best_score[i]))
                    logger.log(
                        15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                        (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            if env.iteration == env.end_iteration - 1:
                if verbose:
                    logger.log(
                        15,
                        'Did not meet early stopping criterion. Best iteration is:\n[%d]\t%s'
                        % (best_iter[i] + 1, '\t'.join([
                            _format_eval_result(x) for x in best_score_list[i]
                        ])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
            if verbose:
                logger.debug((env.iteration - best_iter[i],
                              env.evaluation_result_list[i]))
        if manual_stop_file:
            if os.path.exists(manual_stop_file):
                i = indices_to_check[0]
                logger.log(
                    20,
                    'Found manual stop file, early stopping. Best iteration is:\n[%d]\t%s'
                    % (best_iter[i] + 1, '\t'.join(
                        [_format_eval_result(x) for x in best_score_list[i]])))
                raise EarlyStopException(best_iter[i], best_score_list[i])
        if time_limit:
            time_elapsed = time.time() - start_time
            time_left = time_limit - time_elapsed
            if time_left <= 0:
                i = indices_to_check[0]
                logger.log(
                    20, '\tRan out of time, early stopping on iteration ' +
                    str(env.iteration + 1) +
                    '. Best iteration is:\n\t[%d]\t%s' %
                    (best_iter[i] + 1, '\t'.join(
                        [_format_eval_result(x) for x in best_score_list[i]])))
                raise EarlyStopException(best_iter[i], best_score_list[i])

        # TODO: Add toggle parameter to early_stopping to disable this
        # TODO: Identify optimal threshold values for early_stopping based on lack of memory
        if env.iteration % 10 == 0:
            available = psutil.virtual_memory().available
            cur_rss = mem_status.memory_info().rss

            if cur_rss < init_mem_rss[0]:
                init_mem_rss[0] = cur_rss
            estimated_model_size_mb = (cur_rss - init_mem_rss[0]) >> 20
            available_mb = available >> 20

            model_size_memory_ratio = estimated_model_size_mb / available_mb
            if verbose or (model_size_memory_ratio > 0.25):
                logging.debug('Available Memory: ' + str(available_mb) + ' MB')
                logging.debug('Estimated Model Size: ' +
                              str(estimated_model_size_mb) + ' MB')

            early_stop = False
            if model_size_memory_ratio > 1.0:
                logger.warning(
                    'Warning: Large GBM model size may cause OOM error if training continues'
                )
                logger.warning('Available Memory: ' + str(available_mb) +
                               ' MB')
                logger.warning('Estimated GBM model size: ' +
                               str(estimated_model_size_mb) + ' MB')
                early_stop = True

            # TODO: We will want to track size of model as well, even if we early stop before OOM, we will still crash when saving if the model is large enough
            if available_mb < 512:  # Less than 500 MB
                logger.warning(
                    'Warning: Low available memory may cause OOM error if training continues'
                )
                logger.warning('Available Memory: ' + str(available_mb) +
                               ' MB')
                logger.warning('Estimated GBM model size: ' +
                               str(estimated_model_size_mb) + ' MB')
                early_stop = True

            if early_stop:
                logger.warning(
                    'Warning: Early stopped GBM model prior to optimal result to avoid OOM error. Please increase available memory to avoid subpar model quality.'
                )
                logger.log(
                    15, 'Early stopping, best iteration is:\n[%d]\t%s' %
                    (best_iter[0] + 1, '\t'.join(
                        [_format_eval_result(x) for x in best_score_list[0]])))
                raise EarlyStopException(best_iter[0], best_score_list[0])
コード例 #8
0
ファイル: lightgbm.py プロジェクト: h2oai/optuna
    def __call__(self, env: "CallbackEnv") -> None:

        # If this callback has been passed to `lightgbm.cv` function,
        # the value of `is_cv` becomes `True`. See also:
        # https://github.com/Microsoft/LightGBM/blob/v2.2.2/python-package/lightgbm/engine.py#L329
        # Note that `5` is not the number of folds but the length of sequence.
        is_cv = len(env.evaluation_result_list) > 0 and len(
            env.evaluation_result_list[0]) == 5
        if is_cv:
            target_valid_name = "cv_agg"
        else:
            target_valid_name = self._valid_name

        if target_valid_name is None:
            # just use first key
            target_valid_name = env.evaluation_result_list[0][0]
        if self._metric is None:
            # just use first key
            self._metric = env.evaluation_result_list[0][1]

        for evaluation_result in env.evaluation_result_list:
            valid_name, metric, current_score, is_higher_better = evaluation_result[:
                                                                                    4]
            if valid_name != target_valid_name or metric != self._metric:
                continue

            sig = 1.0
            if is_higher_better:
                if self._trial.study.direction != optuna.study.StudyDirection.MAXIMIZE:
                    sig = -1.0
                    #raise ValueError(
                    #    "The intermediate values are inconsistent with the objective values in "
                    #    "terms of study directions. Please specify a metric to be minimized for "
                    #    "LightGBMPruningCallback."
                    #)
            else:
                if self._trial.study.direction != optuna.study.StudyDirection.MINIMIZE:
                    sig = -1.0
                    #raise ValueError(
                    #    "The intermediate values are inconsistent with the objective values in "
                    #    "terms of study directions. Please specify a metric to be maximized for "
                    #    "LightGBMPruningCallback."
                    #)

            self._trial.report(sig * current_score, step=env.iteration)
            self._trial.was_pruned = False
            if self._trial.should_prune():
                message = "Trial was pruned at iteration {}.".format(
                    env.iteration)
                self._trial.was_pruned = True
                if self._raise_type is None or self._raise_type == "prune":
                    raise optuna.TrialPruned(message)
                else:
                    raise EarlyStopException(env.iteration,
                                             env.evaluation_result_list)

            return None

        raise ValueError(
            'The entry associated with the validation name "{}" and the metric name "{}" '
            "is not found in the evaluation result list {}.".format(
                target_valid_name, self._metric,
                str(env.evaluation_result_list)))