def test_bls_period_recovery(): """Can BLS Periodogram recover the period of a synthetic light curve?""" # Planet parameters period = 2.0 transit_time = 0.5 duration = 0.1 depth = 0.2 flux_err = 0.01 # Create the synthetic light curve time = np.arange(0, 20, 0.02) flux = np.ones_like(time) transit_mask = (np.abs((time - transit_time + 0.5 * period) % period - 0.5 * period) < 0.5 * duration) flux[transit_mask] = 1.0 - depth flux += flux_err * np.random.randn(len(time)) synthetic_lc = LightCurve(time=time, flux=flux) # Can BLS recover the period? bls_period = synthetic_lc.to_periodogram("bls").period_at_max_power assert_almost_equal(bls_period.value, period, decimal=2) # Does it work if we inject a sneaky NaN? synthetic_lc.flux[10] = np.nan bls_period = synthetic_lc.to_periodogram("bls").period_at_max_power assert_almost_equal(bls_period.value, period, decimal=2) # Does it work if all errors are NaNs? # This is a regression test for issue #428 synthetic_lc.flux_err = np.array([np.nan] * len(time)) assert_almost_equal(bls_period.value, period, decimal=2)
def test_bls_period(): """Regression test for #514.""" lc = LightCurve(time=[1, 2, 3], flux=[4, 5, 6]) period = [1, 2, 3, 4, 5] pg = lc.to_periodogram(method="bls", period=period) assert_array_equal(pg.period.value, period) with pytest.raises( ValueError) as err: # NaNs should raise a nice error message lc.to_periodogram(method="bls", period=[1, 2, 3, np.nan, 4]) assert "period" in err.value.args[0]
def test_periodogram_warnings(): """Tests if warnings are raised for non-normalized periodogram input""" lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) lc = lc.normalize(unit="ppm") # Test amplitude normalization and correct units pg = lc.to_periodogram(normalization="amplitude") assert pg.power.unit == u.cds.ppm pg = lc.to_periodogram(freq_unit=u.microhertz, normalization="psd") assert pg.power.unit == u.cds.ppm**2 / u.microhertz
def test_assign_periods(): """Test if you can assign periods and frequencies.""" lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) periods = np.arange(1, 100) * u.day lc = lc.normalize() p = lc.to_periodogram(period=periods) # Get around the floating point error assert np.isclose(np.sum(periods - p.period).value, 0, rtol=1e-14) frequency = np.arange(1, 100) * u.Hz p = lc.to_periodogram(frequency=frequency) assert np.isclose(np.sum(frequency - p.frequency).value, 0, rtol=1e-14)
def test_flatten(): npts = 10000 np.random.seed(12069424) lc = LightCurve( time=np.arange(npts), flux=np.random.normal(1, 0.1, npts), flux_err=np.zeros(npts) + 0.1, ) lc = lc.normalize() p = lc.to_periodogram(normalization="psd", freq_unit=1 / u.day) # Check method returns equal frequency assert all(p.flatten(method="logmedian").frequency == p.frequency) assert all(p.flatten(method="boxkernel").frequency == p.frequency) # Check logmedian flatten of white noise returns mean of ~unity assert np.isclose(np.mean(p.flatten(method="logmedian").power.value), 1.0, atol=0.05) # Check return trend works s, b = p.flatten(return_trend=True) assert all( b.power == p.smooth(method="logmedian", filter_width=0.01).power) assert all(s.power == p.flatten().power) str(s) s.plot() plt.close()
def test_periodogram_slicing(): """Tests whether periodograms can be sliced""" # Fake, noisy data lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) lc = lc.normalize() p = lc.to_periodogram() assert len(p[0:200].frequency) == 200 # Test divide orig = p.power.sum() p /= 2 assert np.sum(p.power) == orig / 2 # Test multiplication p *= 0 assert np.sum(p.power) == 0 # Test addition p += 100 assert np.all(p.power.value >= 100) # Test subtraction p -= 100 assert np.sum(p.power) == 0
def test_periodogram_basics(): """Sanity check to verify that periodogram plotting works""" lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) lc = lc.normalize() pg = lc.to_periodogram() pg.plot() plt.close() pg.plot(view="period") plt.close() pg.show_properties() pg.to_table() str(pg) lc[400:500] = np.nan pg = lc.to_periodogram()
def test_smooth(): """Test if you can smooth the periodogram and check any pitfalls""" np.random.seed(42) lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) lc = lc.normalize() p = lc.to_periodogram(normalization="psd", freq_unit=u.microhertz) # Test boxkernel and logmedian methods assert all(p.smooth(method="boxkernel").frequency == p.frequency) assert all(p.smooth(method="logmedian").frequency == p.frequency) # Check output units assert p.smooth().power.unit == p.power.unit # Check logmedian smooth that the mean of the smoothed power should # be consistent with the mean of the power assert np.isclose( np.mean(p.smooth(method="logmedian").power.value), np.mean(p.power.value), atol=0.05 * np.mean(p.power.value), ) # Can't pass filter_width below 0. with pytest.raises(ValueError) as err: p.smooth(method="boxkernel", filter_width=-5.0) # Can't pass a filter_width in the wrong units with pytest.raises(ValueError) as err: p.smooth(method="boxkernel", filter_width=5.0 * u.day) assert (err.value.args[0] == "the `filter_width` parameter must have frequency units.") # Can't (yet) use a periodogram with a non-evenly spaced frequencies with pytest.raises(ValueError) as err: p = np.arange(1, 100) p = lc.to_periodogram(period=p) p.smooth() # Check logmedian doesn't work if I give the filter width units with pytest.raises(ValueError) as err: p.smooth(method="logmedian", filter_width=5.0 * u.day)
def test_periodogram_normalization(): """Tests the normalization options""" lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, flux_unit="electron/second", ) # Test amplitude normalization and correct units pg = lc.to_periodogram(normalization="amplitude") assert pg.power.unit == u.electron / u.second pg = lc.normalize(unit="ppm").to_periodogram(normalization="amplitude") assert pg.power.unit == u.cds.ppm # Test PSD normalization and correct units pg = lc.to_periodogram(freq_unit=u.microhertz, normalization="psd") assert pg.power.unit == (u.electron / u.second)**2 / u.microhertz pg = lc.normalize(unit="ppm").to_periodogram(freq_unit=u.microhertz, normalization="psd") assert pg.power.unit == u.cds.ppm**2 / u.microhertz
def test_index(): """Test if you can mask out periodogram""" lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) lc = lc.normalize() p = lc.to_periodogram() mask = (p.frequency > 0.1 * (1 / u.day)) & (p.frequency < 0.2 * (1 / u.day)) assert len(p[mask].frequency) == mask.sum()
def test_bin(): """Test if you can bin the periodogram.""" lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) lc = lc.normalize() p = lc.to_periodogram() assert len(p.bin(binsize=10, method="mean").frequency) == len(p.frequency) // 10 assert len(p.bin(binsize=10, method="median").frequency) == len(p.frequency) // 10
def test_periodogram_can_find_periods(): """Periodogram should recover the correct period""" # Light curve that is noisy lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) # Add a 100 day period signal lc.flux += np.sin( (lc.time.value / float(lc.time.value.max())) * 20 * np.pi) lc = lc.normalize() p = lc.to_periodogram(normalization="amplitude") assert np.isclose(p.period_at_max_power.value, 100, rtol=1e-3)
def test_periodogram_units(): """Tests whether periodogram has correct units""" # Fake, noisy data lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, flux_unit="electron/second", ) p = lc.to_periodogram(normalization="amplitude") # Has units assert hasattr(p.frequency, "unit") # Has the correct units assert p.frequency.unit == 1.0 / u.day assert p.power.unit == u.electron / u.second assert p.period.unit == u.day assert p.frequency_at_max_power.unit == 1.0 / u.day assert p.max_power.unit == u.electron / u.second
def test_error_messages(): """Test periodogram raises reasonable errors""" # Fake, noisy data lc = LightCurve( time=np.arange(1000), flux=np.random.normal(1, 0.1, 1000), flux_err=np.zeros(1000) + 0.1, ) # Can't specify period range and frequency range with pytest.raises(ValueError) as err: lc.to_periodogram(maximum_frequency=0.1, minimum_period=10) # Can't have a minimum frequency > maximum frequency with pytest.raises(ValueError) as err: lc.to_periodogram(maximum_frequency=0.1, minimum_frequency=10) assert (err.value.args[0] == "minimum_frequency cannot be larger than maximum_frequency") # Can't have a minimum period > maximum period with pytest.raises(ValueError) as err: lc.to_periodogram(maximum_period=0.1, minimum_period=10) assert err.value.args[ 0] == "minimum_period cannot be larger than maximum_period" # Can't specify periods and frequencies with pytest.raises(ValueError) as err: lc.to_periodogram(frequency=np.arange(10), period=np.arange(10)) # No unitless periodograms with pytest.raises(ValueError) as err: Periodogram([0], [1]) assert err.value.args[ 0] == "frequency must be an `astropy.units.Quantity` object." # No unitless periodograms with pytest.raises(ValueError) as err: Periodogram([0] * u.Hz, [1]) assert err.value.args[ 0] == "power must be an `astropy.units.Quantity` object." # No single value periodograms with pytest.raises(ValueError) as err: Periodogram([0] * u.Hz, [1] * u.K) assert err.value.args[ 0] == "frequency and power must have a length greater than 1." # No uneven arrays with pytest.raises(ValueError) as err: Periodogram([0, 1, 2, 3] * u.Hz, [1, 1] * u.K) assert err.value.args[ 0] == "frequency and power must have the same length." # Bad frequency units with pytest.raises(ValueError) as err: Periodogram([0, 1, 2] * u.K, [1, 1, 1] * u.K) assert err.value.args[0] == "Frequency must be in units of 1/time." # Bad binning with pytest.raises(ValueError) as err: Periodogram([0, 1, 2] * u.Hz, [1, 1, 1] * u.K).bin(binsize=-2) assert err.value.args[0] == "binsize must be larger than or equal to 1" # Bad binning method with pytest.raises(ValueError) as err: Periodogram([0, 1, 2] * u.Hz, [1, 1, 1] * u.K).bin(method="not-implemented") assert "method 'not-implemented' is not supported" in err.value.args[0] # Bad smooth method with pytest.raises(ValueError) as err: Periodogram([0, 1, 2] * u.Hz, [1, 1, 1] * u.K).smooth(method="not-implemented") assert "method 'not-implemented' is not supported" in err.value.args[0]
def test_bls(caplog): """Test that BLS periodogram works and gives reasonable errors""" lc = LightCurve( time=np.linspace(0, 10, 200), flux=np.random.normal(100, 0.1, 200), flux_err=np.zeros(200) + 0.1, ) # should be able to make a periodogram p = lc.to_periodogram(method="bls") keys = ["period", "power", "duration", "transit_time", "depth", "snr"] assert np.all([key in dir(p) for key in keys]) p.plot() plt.close() # we should be able to specify some keywords lc.to_periodogram(method="bls", minimum_period=0.2, duration=0.1, maximum_period=0.5) # Ridiculous BLS spectra should break. with pytest.raises(ValueError) as err: lc.to_periodogram(method="bls", frequency_factor=0.00001) assert err.value.args[0] == ( "`period` contains over 72000001 points.Periodogram is too large to evaluate. Consider setting `frequency_factor` to a higher value." ) # Some errors should occur p.compute_stats() for record in caplog.records: assert record.levelname == "WARNING" assert len(caplog.records) == 3 assert "No period specified." in caplog.text # No more errors stats = p.compute_stats(1, 0.1, 0) assert len(caplog.records) == 3 assert isinstance(stats, dict) # Some errors should occur p.get_transit_model() for record in caplog.records: assert record.levelname == "WARNING" assert len(caplog.records) == 6 assert "No period specified." in caplog.text model = p.get_transit_model(1, 0.1, 0) # No more errors assert len(caplog.records) == 6 # Model is LC assert isinstance(model, LightCurve) # Model is otherwise identical to LC assert np.in1d(model.time, lc.time).all() assert np.in1d(lc.time, model.time).all() mask = p.get_transit_mask(1, 0.1, 0) assert isinstance(mask, np.ndarray) assert isinstance(mask[0], np.bool_) assert mask.sum() < (~mask).sum() assert isinstance(p.period_at_max_power, u.Quantity) assert isinstance(p.duration_at_max_power, u.Quantity) assert isinstance(p.transit_time_at_max_power, Time) assert isinstance(p.depth_at_max_power, u.Quantity)