コード例 #1
0
ファイル: test_primal_cd.py プロジェクト: Snazz2001/lightning
def test_fit_reg_squared_l1():
    clf = CDRegressor(C=1.0, random_state=0, penalty="l1",
                      loss="squared", max_iter=100)
    clf.fit(digit.data, digit.target)
    y_pred = (clf.predict(digit.data) > 0.5).astype(int)
    acc = np.mean(digit.target == y_pred)
    assert_almost_equal(acc, 1.0, 3)
コード例 #2
0
ファイル: test_primal_cd.py プロジェクト: Snazz2001/lightning
def test_fit_reg_squared_loss_nn_l2():
    K = pairwise_kernels(digit.data, metric="poly", degree=4)
    clf = CDRegressor(C=1, random_state=0, penalty="nnl2",
                      loss="squared", max_iter=100)
    clf.fit(K, digit.target)
    y_pred = (clf.predict(K) > 0.5).astype(int)
    acc = np.mean(digit.target == y_pred)
    assert_almost_equal(acc, 0.9444, 3)
コード例 #3
0
ファイル: test_primal_cd.py プロジェクト: Snazz2001/lightning
def test_fit_reg_squared_multiple_outputs():
    reg = CDRegressor(C=0.05, random_state=0, penalty="l1/l2",
                      loss="squared", max_iter=100)
    lb = LabelBinarizer()
    Y = lb.fit_transform(mult_target)
    reg.fit(mult_dense, Y)
    y_pred = lb.inverse_transform(reg.predict(mult_dense))
    assert_almost_equal(np.mean(y_pred == mult_target), 0.797, 3)
    assert_almost_equal(reg.n_nonzero(percentage=True), 0.5)
コード例 #4
0
def test_fit_reg_squared_l1():
    clf = CDRegressor(C=1.0,
                      random_state=0,
                      penalty="l1",
                      loss="squared",
                      max_iter=100)
    clf.fit(digit.data, digit.target)
    y_pred = (clf.predict(digit.data) > 0.5).astype(int)
    acc = np.mean(digit.target == y_pred)
    assert_almost_equal(acc, 1.0, 3)
コード例 #5
0
ファイル: test_primal_cd.py プロジェクト: Snazz2001/lightning
def test_fit_reg_squared_multiple_outputs():
    reg = CDRegressor(C=1.0, random_state=0, penalty="l2",
                      loss="squared", max_iter=100)
    Y = np.zeros((len(digit.target), 2))
    Y[:, 0] = digit.target
    Y[:, 1] = digit.target
    reg.fit(digit.data, Y)
    y_pred = reg.predict(digit.data)
    assert_equal(y_pred.shape[0], len(digit.target))
    assert_equal(y_pred.shape[1], 2)
コード例 #6
0
def test_fit_reg_squared_loss_nn_l2():
    K = pairwise_kernels(digit.data, metric="poly", degree=4)
    clf = CDRegressor(C=1,
                      random_state=0,
                      penalty="nnl2",
                      loss="squared",
                      max_iter=100)
    clf.fit(K, digit.target)
    y_pred = (clf.predict(K) > 0.5).astype(int)
    acc = np.mean(digit.target == y_pred)
    assert_almost_equal(acc, 0.9444, 3)
コード例 #7
0
def test_fit_reg_squared_multiple_outputs():
    reg = CDRegressor(C=0.05,
                      random_state=0,
                      penalty="l1/l2",
                      loss="squared",
                      max_iter=100)
    lb = LabelBinarizer()
    Y = lb.fit_transform(mult_target)
    reg.fit(mult_dense, Y)
    y_pred = lb.inverse_transform(reg.predict(mult_dense))
    assert_almost_equal(np.mean(y_pred == mult_target), 0.797, 3)
    assert_almost_equal(reg.n_nonzero(percentage=True), 0.5)
コード例 #8
0
def test_fit_reg_squared_multiple_outputs():
    reg = CDRegressor(C=1.0,
                      random_state=0,
                      penalty="l2",
                      loss="squared",
                      max_iter=100)
    Y = np.zeros((len(digit.target), 2))
    Y[:, 0] = digit.target
    Y[:, 1] = digit.target
    reg.fit(digit.data, Y)
    y_pred = reg.predict(digit.data)
    assert_equal(y_pred.shape[0], len(digit.target))
    assert_equal(y_pred.shape[1], 2)