コード例 #1
0
def DLmodel_regressor(Xtrain_in,
                      ytrain_in,
                      Xtest_in,
                      ytest_in,
                      lime_flag=False,
                      df_row=None):
    start_time = time.time()
    estimator = KerasRegressor(build_fn=DLmodel_baseline,
                               epochs=20,
                               batch_size=5,
                               verbose=10)
    seed = 23
    numpy.random.seed(seed)
    estimator.fit(Xtrain_in, ytrain_in)
    y_test_pred = estimator.predict(Xtest_in)
    y_train_pred = estimator.predict(Xtrain_in)
    score_test = r2_score(y_test_pred, ytest_in)
    score_train = r2_score(y_train_pred, ytrain_in)
    adj_Rscore_train = adjusted_R2score_calc(Xtrain_in, score_train)
    adj_Rscore_test = adjusted_R2score_calc(Xtest_in, score_test)
    time_end = time.time() - start_time
    mrs_train = mean_squared_error(y_train_pred, ytrain_in)
    mrs_test = mean_squared_error(y_test_pred, ytest_in)
    if lime_flag:
        lime_explainer(Xtrain_in, df_row, estimator, "Keras_base")
    time_end = time.time() - start_time
    log_record_result("Keras base model", time_end, score_train, score_test,
                      adj_Rscore_train, adj_Rscore_test, mrs_train, mrs_test)
    plot_residuals(Xtest_in, ytest_in, estimator,
                   "Keras_base")  #plots residual
    return "Keras base model", str(time_end), str(score_train), str(
        score_test), str(adj_Rscore_train), str(adj_Rscore_test)
コード例 #2
0
def adaboost(X_train, y_train, X_test, y_test, lime_flag=False,
       base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None):
    
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time          = time.time()
    # cretae instance
    adaboost= AdaBoostClassifier(base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, 
                            algorithm=algorithm, random_state=random_state)

    adaboost.fit(X_train,y_train)
    #Predict on test set
    y_pred= adaboost.predict(X_test)

    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= adaboost, alogorithm_name="adaboost")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, adaboost, time_end, alg_name='adaboost') 
    # resturn model object
    return adaboost
コード例 #3
0
def gb(X_train, y_train, X_test, y_test, lime_flag=False,
       loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, 
                                    criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, 
                                    min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, 
                                    min_impurity_split=None, init=None, random_state=None, max_features=None, 
                                    verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto', 
                                    validation_fraction=0.1, n_iter_no_change=None, tol=0.0001):
    
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time          = time.time()
    # cretae instance
    gb= GradientBoostingClassifier(loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, subsample=subsample, 
                                    criterion=criterion, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, 
                                    min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, min_impurity_decrease=min_impurity_decrease, min_impurity_split=min_impurity_split, init=init, random_state=random_state, max_features=max_features, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start, presort=presort, 
                                    validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, tol=tol)

    gb.fit(X_train,y_train)
    #Predict on test set
    y_pred= gb.predict(X_test)

    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= gb, alogorithm_name="gb")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, gb, time_end, alg_name='gb') 
    # resturn model object
    return gb
コード例 #4
0
def rf(X_train, y_train, X_test, y_test, lime_flag=False,
                      n_estimators=50, criterion='gini', max_depth=None, 
                       min_samples_split=40, min_samples_leaf=20, min_weight_fraction_leaf=0.0, 
                       max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, 
                       min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=-1, 
                       random_state=42, verbose=0, warm_start=False, class_weight=None):
    
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time          = time.time()
    # cretae instance
    rf= RandomForestClassifier(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth, 
                       min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, 
                               min_weight_fraction_leaf=min_weight_fraction_leaf, 
                       max_features=max_features, max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=min_impurity_decrease, 
                       min_impurity_split=min_impurity_split, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, 
                       random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight)

    rf.fit(X_train,y_train)
    #Predict on test set
    y_pred= rf.predict(X_test)

    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= rf, alogorithm_name="rf")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, rf, time_end, alg_name='rf') 
    # resturn model object
    return rf
コード例 #5
0
def dt(X_train, y_train, X_test, y_test, lime_flag=False,
      criterion='gini', splitter='best', 
                               max_depth=None, min_samples_split=2, min_samples_leaf=1, 
                               min_weight_fraction_leaf=0.0, max_features=None, random_state=None, 
                               max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 
                               class_weight=None, presort=False):
    
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time          = time.time()
    # cretae instance
    dt= DecisionTreeClassifier(criterion=criterion, splitter=splitter, 
                               max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, 
                               min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, random_state=random_state, 
                               max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=min_impurity_decrease, min_impurity_split=min_impurity_split, 
                               class_weight=class_weight, presort=presort)

    dt.fit(X_train,y_train)
    #Predict on test set
    y_pred= dt.predict(X_test)
    feat_imp= pd.DataFrame(dt.feature_importances_,index = X_train.columns,
                                       columns=['Importance']).sort_values('Importance',ascending=False)
    print(feat_imp.loc[feat_imp['Importance']>0].shape[0] , "Features have more than zero importance")
    print(feat_imp.loc[feat_imp['Importance']>0])
    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= dt, alogorithm_name="Decision Tree")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, dt, time_end, alg_name='Decision Tree') 
    # resturn model object
    return dt
コード例 #6
0
def gpc(X_train, y_train, X_test, y_test, lime_flag=False, kernel=1.0 * RBF(1.0),
        optimizer='fmin_l_bfgs_b',
        n_restarts_optimizer=0,warm_start=False ,
        random_state=42, n_jobs=-1 ,
        max_iter_predict= 1000 ,
        copy_X_train=True ):
    
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time          = time.time()
    # cretae instance
    gpc= GaussianProcessClassifier(kernel=1.0 * RBF(1.0) ,
                                   optimizer=optimizer, 
                                   n_restarts_optimizer=n_restarts_optimizer,
                                   max_iter_predict=max_iter_predict ,
                                   warm_start=warm_start, 
                                   copy_X_train=copy_X_train,
                                   random_state=random_state,
                                   n_jobs=n_jobs)

    gpc.fit(X_train,y_train)
    #Predict on test set
    y_pred= gpc.predict(X_test)
    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= gpc, alogorithm_name="gpc")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, gpc, time_end, alg_name='gpc') 
    # resturn model object
    return gpc
コード例 #7
0
def sgd(X_train, y_train, X_test, y_test, lime_flag=False, 
                   loss= 'log', penalty='l2', alpha=0.0001, l1_ratio=0.15, 
                   fit_intercept=True, max_iter=1000, tol=None, shuffle=True, verbose=0, 
                   epsilon=0.1, n_jobs=-1, random_state=42, learning_rate='optimal', 
                   eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, 
                   n_iter_no_change=5, class_weight=None, warm_start=False, average=False, n_iter=None):
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time          = time.time()
    # cretae instance
    sgd= SGDClassifier(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, 
                   fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, 
                   epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, 
                   eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, 
                   n_iter_no_change=n_iter_no_change, class_weight=class_weight, warm_start=warm_start, average=average,
                       n_iter=n_iter)
    sgd.fit(X_train,y_train)
    #Predict on test set
    y_pred= sgd.predict(X_test)
    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= sgd, alogorithm_name="SGD")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, sgd, time_end, alg_name='SGD') 
    # resturn model object
    return sgd 
コード例 #8
0
def DLmodel_regressor_gridsearch(Xtrain_in,
                                 ytrain_in,
                                 Xtest_in,
                                 ytest_in,
                                 lime_flag=False,
                                 df_row=None):
    start_time = time.time()
    estimator = KerasRegressor(build_fn=DLmodel_model, verbose=10)
    batch_size = [20, 50, 100]
    epochs = [50, 100, 200]
    param_grid = dict(batch_size=batch_size,
                      epochs=epochs)  #,  neurons=neurons)
    grid = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)
    grid_result = grid.fit(Xtrain_in, ytrain_in)
    seed = 23
    np.random.seed(seed)
    estimator.fit(Xtrain_in, ytrain_in)

    y_test_pred = grid_result.predict(Xtest_in)
    y_train_pred = grid_result.predict(Xtrain_in)
    score_test = r2_score(y_test_pred, ytest_in)
    score_train = r2_score(y_train_pred, ytrain_in)
    adj_Rscore_train = adjusted_R2score_calc(Xtrain_in, score_train)
    adj_Rscore_test = adjusted_R2score_calc(Xtest_in, score_test)
    best_parameters = grid.best_params_
    time_end = time.time() - start_time
    mrs_train = mean_squared_error(y_train_pred, ytrain_in)
    mrs_test = mean_squared_error(y_test_pred, ytest_in)
    if lime_flag:
        lime_explainer(Xtrain_in, df_row, grid, "Keras_grid")
    time_end = time.time() - start_time
    log_record_result("Keras base model gridsearch",
                      time_end,
                      score_train,
                      score_test,
                      adj_Rscore_train,
                      adj_Rscore_test,
                      mrs_train=mrs_train,
                      mrs_test=mrs_test,
                      best_param=best_parameters)
    plot_residuals(Xtest_in, ytest_in, grid, "Keras_grid")  #plots residual
    return "Keras base model gridsearch", str(time_end), str(score_train), str(
        score_test), str(adj_Rscore_train), str(adj_Rscore_test), str(
            best_parameters)
コード例 #9
0
def logistic_regression(X_train, y_train, X_test, y_test, lime_flag=False, penalty='l2', dual=True, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, verbose=0, warm_start=False, n_jobs=-1):
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    penalty,  dual, tol=, C=, fit_intercept, intercept_scaling, class_weight, random_state, solver, max_iter, multi_class, verbose=, warm_start, n_jobs : Parameters to sklearn logistic regression class
    '''
    start_time          = time.time()
    # cretae instance
    log= LogisticRegression(penalty=penalty, dual=dual, tol=tol, C=C, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight, random_state=random_state, solver=solver, max_iter=max_iter,  verbose=verbose, warm_start=warm_start, n_jobs=n_jobs)
    #fit on train set
    log.fit(X_train,y_train)
    #Predict on test set
    y_pred= log.predict(X_test)
    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= log, alogorithm_name="Logistic_Regression")                                                
    time_end=time.time() - start_time
    # Scores
    model_evaluation(X_train,y_train, X_test, y_test,y_pred, log, time_end, alg_name='Logistic_Regression') 
    # resturn model object
    return log
コード例 #10
0
def mlpc(X_train,
         y_train,
         X_test,
         y_test,
         lime_flag=False,
         hidden_layer_sizes=(100, ),
         activation='relu',
         solver='adam',
         alpha=0.0001,
         batch_size='auto',
         learning_rate='constant',
         learning_rate_init=0.001,
         power_t=0.5,
         max_iter=200,
         shuffle=True,
         random_state=None,
         tol=0.0001,
         verbose=False,
         warm_start=False,
         momentum=0.9,
         nesterovs_momentum=True,
         early_stopping=False,
         validation_fraction=0.1,
         beta_1=0.9,
         beta_2=0.999,
         epsilon=1e-08,
         n_iter_no_change=10):
    '''
    Parameters:
    X_train, y_train, X_test, y_test- Learning set
    lime_flag-  enable or disable lime
    '''
    start_time = time.time()
    # cretae instance
    mlpc = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes,
                         activation=activation,
                         solver=solver,
                         alpha=alpha,
                         batch_size=batch_size,
                         learning_rate='constant',
                         learning_rate_init=0.001,
                         power_t=power_t,
                         max_iter=max_iter,
                         shuffle=shuffle,
                         random_state=random_state,
                         tol=tol,
                         verbose=verbose,
                         warm_start=warm_start,
                         momentum=momentum,
                         nesterovs_momentum=nesterovs_momentum,
                         early_stopping=early_stopping,
                         validation_fraction=validation_fraction,
                         beta_1=beta_1,
                         beta_2=beta_2,
                         epsilon=epsilon,
                         n_iter_no_change=n_iter_no_change)

    mlpc.fit(X_train, y_train)
    #Predict on test set
    y_pred = mlpc.predict(X_test)

    # understand the model through lime
    if lime_flag:
        lime_explainer(X_train,
                       y_train,
                       X_test,
                       y_test,
                       df_row=2,
                       model_predictor=mlpc,
                       alogorithm_name="mlpc")
    time_end = time.time() - start_time
    # Scores
    model_evaluation(X_train,
                     y_train,
                     X_test,
                     y_test,
                     y_pred,
                     mlpc,
                     time_end,
                     alg_name='mlpc')
    # resturn model object
    return mlpc
コード例 #11
0
def grid_search(X_train, y_train, X_test, y_test, lime_flag= True,
                tuned_parameters = [{'kernel': ['rbf'] , 'gamma': [1e-3, 1e-4] , 
                     'C': [1, 10, 100, 1000]} , {'kernel': ['linear'] , 'C': [1, 10, 100, 1000]}] ,model= SVC()):
    '''
    X_train, y_train, X_test, y_test:  train and test set
    tuned_parameters: parameters to be tuned
    model: classifier for grid search 
    '''
    start_time          = time.time()
    
    scores = ['precision', 'recall', 'accuracy', 'f1', 'roc_auc']
    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()
        clf = GridSearchCV(model, tuned_parameters, cv=5,scoring= score)
        clf.fit(X_train, y_train)
        #Best parameters
        print("Best parameters set found on development set:")
        print()
        print(clf.best_params_)
        print()
        print("Grid scores on development set:")
        print()
        means = clf.cv_results_['mean_test_score']
        stds = clf.cv_results_['std_test_score']
        for mean, std, params in zip(means, stds, clf.cv_results_['params']):
            print((mean, std * 2, params))
        print()
        
        #classification report
        print("Detailed classification report:")
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        
        # Accuracy Score
        acc =accuracy_score(y_pred= y_pred, y_true=y_test) * 100
        print('Accuracy '+ str(acc))
        print('Balanced accuracy score '+ str(balanced_accuracy_score(y_pred= y_pred, y_true=y_test) * 100))

        #f1_score
        f1=f1_score(y_pred= y_pred, y_true=y_test, average='macro')  * 100
        print('F1 score ' + str(f1))
        
        #precision_score
        prec=precision_score(y_pred= y_pred, y_true=y_test, average='weighted')* 100
        print('Precision score ' + str(prec))
        
        #log_loss
        print('Log loss ' + str(log_loss(y_pred= y_pred, y_true=y_test) ))
        
        #recall_score
        recall=recall_score(y_pred= y_pred, y_true=y_test)*100
        print('Recall score ' + str( recall))
        
        #roc_curve
        y_pred_proba = clf.predict_proba(X_test)[:,1]
        false_positive_rate, true_positive_rate, thresholds = roc_curve(y_true=y_test, y_score=y_pred_proba)

        plt.plot([0,1],[0,1],'k--')
        plt.plot(false_positive_rate,true_positive_rate, label='Grid Search')
        plt.xlabel('False positive rate')
        plt.ylabel('True positive rate')
        plt.title('ROC curve of ' + 'Grid Search')
        plt.show()

        #roc_auc_score
        roc= roc_auc_score(y_test,y_pred_proba) * 100
        print('ROC AUC score ' + str(roc))

        #confusion_matrix
        print('Confusion matrix ' + str(confusion_matrix(y_test,y_pred)))
        pd.crosstab(y_test, y_pred, rownames=['True'], colnames=['Predicted'], margins=True)

        # understand the model through lime
        if lime_flag:
            lime_explainer(X_train, y_train, X_test, y_test, df_row=2,  model_predictor= clf, alogorithm_name="Grid Search")                                                
        time_end=time.time() - start_time
        # Scores
        model_evaluation(X_train,y_train, X_test, y_test,y_pred, clf, time_end, alg_name='Grid Search') 
        # resturn model object
        return clf