コード例 #1
0
def test_vardec_multitrait():
    random = RandomState(0)
    nsamples = 20

    X = random.randn(nsamples, 2)
    X = (X - X.mean(0)) / X.std(0)
    X = concatenate((ones((nsamples, 1)), X), axis=1)
    lik = "normal"

    K = random.randn(nsamples, 10)
    K = K @ K.T
    K /= K.diagonal().mean()
    K += eye(nsamples) * 1e-4

    y0 = X @ random.randn(3) + mvn(random, zeros(nsamples), K)
    y1 = X @ random.randn(3) + mvn(random, zeros(nsamples), K)

    Y = stack((y0, y1), axis=1)

    vardec = VarDec(Y, lik, X)
    vardec.append(K)
    vardec.append_iid()

    vardec.fit(verbose=False)
    assert_allclose(
        vardec.covariance[0].scale,
        [
            [0.7051133960584494, 0.18484625482083472],
            [0.18484625482083472, 0.048457649666404354],
        ],
        rtol=1e-4,
    )
    assert_allclose(
        vardec.covariance[1].scale,
        [
            [1.4901383238452581e-05, 1.78191074575448e-05],
            [1.78191074575448e-05, 1.4592715995489043],
        ],
        atol=1e-6,
        rtol=1e-4,
    )
    assert_allclose(vardec.lml(), -17.39609607331073)
    assert_allclose(
        vardec.effsizes,
        [
            [-0.6356567160957514, 0.06692298344869516],
            [-0.3888579153976617, -1.5350512471600464],
            [-0.13499034585739983, 0.08961009904531193],
        ],
        rtol=1e-4,
    )
コード例 #2
0
ファイル: test_qtl_scan.py プロジェクト: phue/limix
def test_qtl_scan_three_hypotheses_mt():
    random = RandomState(0)
    n = 30
    ntraits = 2
    ncovariates = 3

    A = random.randn(ntraits, ntraits)
    A = A @ A.T
    M = random.randn(n, ncovariates)

    C0 = random.randn(ntraits, ntraits)
    C0 = C0 @ C0.T

    C1 = random.randn(ntraits, ntraits)
    C1 = C1 @ C1.T

    G = random.randn(n, 4)

    A0 = random.randn(ntraits, 1)
    A1 = random.randn(ntraits, 2)
    A01 = concatenate((A0, A1), axis=1)

    K = random.randn(n, n + 1)
    K = normalise_covariance(K @ K.T)

    beta = vec(random.randn(ntraits, ncovariates))
    alpha = vec(random.randn(A01.shape[1], G.shape[1]))

    m = kron(A, M) @ beta + kron(A01, G) @ alpha
    Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1))

    idx = [[0, 1], 2, [3]]
    r = scan(G, Y, idx=idx, K=K, M=M, A=A, A0=A0, A1=A1, verbose=False)
    str(r)
コード例 #3
0
def test_vardec_2_matrices():
    random = RandomState(0)
    nsamples = 20

    X = random.randn(nsamples, 2)
    X = (X - X.mean(0)) / X.std(0)
    X = concatenate((ones((nsamples, 1)), X), axis=1)
    lik = "normal"

    K = random.randn(nsamples, 10)
    K = K @ K.T
    K /= K.diagonal().mean()
    K += eye(nsamples) * 1e-4

    y = X @ random.randn(3) + mvn(random, zeros(nsamples),
                                  K) + random.randn(nsamples)

    vardec = VarDec(y, lik, X)
    vardec.append(K)
    vardec.append_iid()

    vardec.fit(verbose=False)
    assert_allclose(vardec.covariance[0].scale, 0.32199728815536727, rtol=1e-5)
    assert_allclose(vardec.covariance[1].scale, 1.4182987383374532, rtol=1e-5)
    assert_allclose(vardec.lml(), -33.63946372828994, rtol=1e-5)
コード例 #4
0
def test_vardec_poisson_2_matrices():
    random = RandomState(0)
    nsamples = 20

    X = random.randn(nsamples, 2)
    X = (X - X.mean(0)) / X.std(0)
    X = concatenate((ones((nsamples, 1)), X), axis=1)
    lik = "poisson"

    K = random.randn(nsamples, 10)
    K = K @ K.T
    K /= K.diagonal().mean()
    K += eye(nsamples) * 1e-4

    y = X @ random.randn(3) + mvn(random, zeros(nsamples), K)
    y = exp((y - y.mean()) / y.std())

    vardec = VarDec(y, lik, X)
    vardec.append(K)
    vardec.append_iid()

    vardec.fit(verbose=False)
    assert_allclose(vardec.covariance[0].scale, 0.10726852397002325, atol=1e-5)
    assert_allclose(vardec.covariance[1].scale,
                    4.168569936272955e-11,
                    atol=1e-5)
    assert_allclose(vardec.lml(), -26.36419072811823)
コード例 #5
0
def test_vardec():
    random = RandomState(0)
    nsamples = 20

    X = random.randn(nsamples, 2)
    X = (X - X.mean(0)) / X.std(0)
    X = concatenate((ones((nsamples, 1)), X), axis=1)
    lik = "normal"

    K0 = random.randn(nsamples, 10)
    K0 = K0 @ K0.T
    K0 /= K0.diagonal().mean()
    K0 += eye(nsamples) * 1e-4

    K1 = random.randn(nsamples, 10)
    K1 = K1 @ K1.T
    K1 /= K1.diagonal().mean()
    K1 += eye(nsamples) * 1e-4

    y = X @ random.randn(3) + mvn(random, zeros(nsamples), K0)
    y += mvn(random, zeros(nsamples), K1)

    vardec = VarDec(y, lik, X)
    vardec.append(K0)
    vardec.append(K1)
    vardec.append_iid()

    vardec.fit(verbose=False)
    assert_allclose(vardec.covariance[0].scale, 0.38473522809891697)
    assert_allclose(vardec.covariance[1].scale, 1.1839796169221422)
    assert_allclose(vardec.covariance[2].scale,
                    2.061153622438558e-09,
                    atol=1e-5)
    assert_allclose(vardec.lml(), -21.91827344966165)
    assert_allclose(
        vardec.effsizes,
        [-0.5008873352111712, -1.193536406235688, -0.28254298530554534])
コード例 #6
0
def test_vardec_poisson():
    random = RandomState(0)
    nsamples = 20

    X = random.randn(nsamples, 2)
    X = (X - X.mean(0)) / X.std(0)
    X = concatenate((ones((nsamples, 1)), X), axis=1)
    lik = "poisson"

    K0 = random.randn(nsamples, 10)
    K0 = K0 @ K0.T
    K0 /= K0.diagonal().mean()
    K0 += eye(nsamples) * 1e-4

    K1 = random.randn(nsamples, 10)
    K1 = K1 @ K1.T
    K1 /= K1.diagonal().mean()
    K1 += eye(nsamples) * 1e-4

    y = X @ random.randn(3) + mvn(random, zeros(nsamples), K0)
    y += mvn(random, zeros(nsamples), K1)
    y = exp((y - y.mean()) / y.std())

    vardec = VarDec(y, lik, X)
    vardec.append(K0)
    vardec.append(K1)
    vardec.append_iid()

    vardec.fit(verbose=False)
    assert_allclose(vardec.covariance[0].scale,
                    2.808478303826397e-09,
                    atol=1e-5)
    assert_allclose(vardec.covariance[1].scale, 0.3503800007985209)
    assert_allclose(vardec.covariance[2].scale,
                    2.061153622438558e-09,
                    atol=1e-5)
    assert_allclose(vardec.lml(), -28.887285796984564)
コード例 #7
0
ファイル: test_qtl_scan.py プロジェクト: phue/limix
def _test_qtl_scan_st(lik):
    random = RandomState(0)
    n = 30
    ncovariates = 3

    M = random.randn(n, ncovariates)

    v0 = random.rand()
    v1 = random.rand()

    G = random.randn(n, 4)

    K = random.randn(n, n + 1)
    K = normalise_covariance(K @ K.T)

    beta = random.randn(ncovariates)
    alpha = random.randn(G.shape[1])

    m = M @ beta + G @ alpha
    y = mvn(random, m, v0 * K + v1 * eye(n))

    idx = [[0, 1], 2, [3]]

    if lik == "poisson":
        y = random.poisson(exp(y))
    elif lik == "bernoulli":
        y = random.binomial(1, 1 / (1 + exp(-y)))
    elif lik == "probit":
        y = random.binomial(1, st.norm.cdf(y))
    elif lik == "binomial":
        ntrials = random.randint(0, 30, len(y))
        y = random.binomial(ntrials, 1 / (1 + exp(-y)))
        lik = (lik, ntrials)

    r = scan(G, y, lik=lik, idx=idx, K=K, M=M, verbose=False)
    str(r)
    str(r.stats.head())
    str(r.effsizes["h2"].head())
    str(r.h0.trait)
    str(r.h0.likelihood)
    str(r.h0.lml)
    str(r.h0.effsizes)
    str(r.h0.variances)
コード例 #8
0
ファイル: test_qtl_scan.py プロジェクト: phue/limix
def test_qtl_scan_two_hypotheses_mt_A0A1_none():
    random = RandomState(0)
    n = 30
    ntraits = 2
    ncovariates = 3

    A = random.randn(ntraits, ntraits)
    A = A @ A.T
    M = random.randn(n, ncovariates)

    C0 = random.randn(ntraits, ntraits)
    C0 = C0 @ C0.T

    C1 = random.randn(ntraits, ntraits)
    C1 = C1 @ C1.T

    G = random.randn(n, 4)

    A1 = eye(ntraits)

    K = random.randn(n, n + 1)
    K = normalise_covariance(K @ K.T)

    beta = vec(random.randn(ntraits, ncovariates))
    alpha = vec(random.randn(A1.shape[1], G.shape[1]))

    m = kron(A, M) @ beta + kron(A1, G) @ alpha
    Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1))
    Y = DataArray(Y, dims=["sample", "trait"], coords={"trait": ["WA", "Cx"]})

    idx = [[0, 1], 2, [3]]
    r = scan(G, Y, idx=idx, K=K, M=M, A=A, verbose=False)
    df = r.effsizes["h2"]
    df = df[df["test"] == 0]
    assert_array_equal(df["trait"], ["WA"] * 3 + ["Cx"] * 3 + [None] * 4)
    assert_array_equal(
        df["env"], [None] * 6 + ["env1_WA", "env1_WA", "env1_Cx", "env1_Cx"]
    )
    str(r)