def main(): X = [] Xte = [] #5485 is the number of unique words -1 featureNo = 5485 # step 1: processing the data. populateData(X,"trainingData.txt",featureNo) populateData(Xte,"testingData.txt",featureNo) Y =[] Yte = [] # get the labels for the data getLabel(Y,"graphics-windows-train.megam","train.basebal.hockey.megam") getLabel(Yte,"graphics-windows-test.megam","test.baseball.hockey.megam") # test h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 0, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTest(h, X, Y, Xte, Yte) print h
# WU 2 ########## f = lambda x: sin(pi*x) + x**2/2 derF = lambda x: pi*cos(pi*x) + x # x = linspace(-5, 5, 500) # plot(x, f(x), 'b-') # plot(-0.4538, f(-0.4538), 'r*') #plot the global min # title('f(x) = sin(x*pi) + x^2/2') x_global, t = gd.gd(f, derF, 0, 10, 0.2) x_local, t = gd.gd(f, derF, 1, 10, 0.2) ########## #For linear import linear h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 0, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDAxisAligned) X = datasets.TwoDAxisAligned.X Y = datasets.TwoDAxisAligned.Y #mlGraphics.plotLinearClassifier(h, X, Y) h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 10, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDAxisAligned) h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 10, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDDiagonal)
import runClassifier import datasets import linear # ---------------------- # WU5 FIND TOP 5 weights # ---------------------- print "SquaredLoss" s = linear.LinearClassifier({ 'lossFunction': linear.SquaredLoss(), 'lambda': 1, 'numIter': 100, 'stepSize': 0.5 }) runClassifier.trainTestSet(s, datasets.WineDataBinary) print "\n----------------------------------------------------\n" print "LogisticLoss" l = linear.LinearClassifier({ 'lossFunction': linear.LogisticLoss(), 'lambda': 1, 'numIter': 100, 'stepSize': 0.5 }) runClassifier.trainTestSet(l, datasets.WineDataBinary) print "\n----------------------------------------------------\n" print "HingeLoss" h = linear.LinearClassifier({ 'lossFunction': linear.HingeLoss(),