コード例 #1
0
def test_clustered_cov_debiased(data):
    c = ClusteredCovariance(data.x,
                            data.y,
                            data.z,
                            data.params,
                            debiased=True,
                            clusters=data.clusters)
    assert c.debiased is True
    assert c.config["debiased"] is True
    assert_equal(c.config["clusters"], data.clusters)

    ngroups = len(np.unique(data.clusters))
    sums = np.zeros((ngroups, data.nvar))
    xe = data.xhat * data.e
    for i in range(len(data.clusters)):
        sums[data.clusters[i]] += xe[i]
    op = np.zeros((data.nvar, data.nvar))
    for j in range(len(sums)):
        op += sums[[j]].T @ sums[[j]]
    # This is a strange choice
    s = (op / data.nobs * ((data.nobs - 1) / (data.nobs - data.nvar)) *
         ngroups / (ngroups - 1))
    assert_allclose(c.s, s)
    assert_allclose(c.cov, data.vinv @ s @ data.vinv / data.nobs)

    cs = str(c)
    assert "Debiased: True" in cs
    assert "Num Clusters: {0}".format(len(sums)) in cs
    assert "id" in c.__repr__()
コード例 #2
0
def test_clustered_cov_errors(data):
    with pytest.raises(ValueError):
        ClusteredCovariance(data.x,
                            data.y,
                            data.z,
                            data.params,
                            clusters=data.clusters[:10])
コード例 #3
0
 def test_asymptotic(self, data):
     c = ClusteredCovariance(data.x, data.y, data.z, data.params,
                             clusters=data.clusters)
     assert c._kappa == 1
     assert c.debiased is False
     assert c.config['debiased'] is False
     assert_equal(c.config['clusters'], data.clusters)
     assert_allclose(c.s2, data.s2)
     sums = np.zeros((len(np.unique(data.clusters)), data.nvar))
     xe = data.xhat * data.e
     for i in range(len(data.clusters)):
         sums[data.clusters[i]] += xe[i]
     op = np.zeros((data.nvar, data.nvar))
     for j in range(len(sums)):
         op += sums[[j]].T @ sums[[j]]
     s = op / data.nobs
     assert_allclose(c.s, s)
     assert_allclose(c.cov, data.vinv @ s @ data.vinv / data.nobs)
     cs = str(c)
     assert 'Debiased: False' in cs
     assert 'Num Clusters: {0}'.format(len(sums)) in cs