def test_debiased(self, data): wm = HeteroskedasticWeightMatrix(debiased=True) z, e, nobs, nvar = data.z, data.e, data.nobs, data.nvar weight = wm.weight_matrix(data.x, z, e) ze = z * e scale = nobs / (nobs - nvar) assert_allclose(weight, scale * ze.T @ ze / nobs)
def test_center(self, data): wm = HeteroskedasticWeightMatrix(True) z, e, nobs = data.z, data.e, data.nobs weight = wm.weight_matrix(data.x, z, e) ze = z * e ze -= ze.mean(0) assert_allclose(weight, ze.T @ ze / nobs)
def test_config(self, data): wm = HeteroskedasticWeightMatrix() z, e, nobs = data.z, data.e, data.nobs weight = wm.weight_matrix(data.x, z, e) ze = z * e assert_allclose(weight, ze.T @ ze / nobs) assert wm.config['center'] is False assert wm.config['debiased'] is False