def testInitPolynomialModel(self): # Defining a polynomial model with no covariance matrix should be the # same as one with a diagonal covariance matrix with ones on the diagonal. orderList = [0, 2] nParameters = len(orderList) covariateName = "t" regressorNames = ["1", "t^2"] polyModel1 = PolynomialModel(self.time, covariateName, orderList) polyModel2 = PolynomialModel(self.time, covariateName, orderList, np.diag(np.ones(self.nObservations))) self.assertTrue(np.alltrue(polyModel1.designMatrix() == polyModel2.designMatrix()))
def testInitPolynomialModel(self): # Define the input, and derive what the output should be orderList = [0, 2] nParameters = len(orderList) covariateName = "t" regressorNames = ["1", "t^2"] designMatrix = np.empty((self.nObservations, nParameters)) for n in range(len(orderList)): designMatrix[:, n] = self.time ** orderList[n] # Assert if the output is what it should be polyModel = PolynomialModel(self.time, covariateName, orderList) self.assertTrue(polyModel.nParameters() == nParameters) self.assertTrue(polyModel.regressorNames() == regressorNames) self.assertTrue(polyModel.nObservations() == self.nObservations) self.assertTrue(np.alltrue(polyModel.designMatrix() == designMatrix))
def testInitPolynomialModel(self): # Defining a polynomial model with no covariance matrix should be the # same as one with a diagonal covariance matrix with ones on the diagonal. orderList = [0,2] nParameters = len(orderList) covariateName = "t" regressorNames = ["1", "t^2"] polyModel1 = PolynomialModel(self.time, covariateName, orderList) polyModel2 = PolynomialModel(self.time, covariateName, orderList, np.diag(np.ones(self.nObservations))) self.assertTrue(np.alltrue(polyModel1.designMatrix() == polyModel2.designMatrix()))
def testInitPolynomialModel(self): # Define the input, and derive what the output should be orderList = [0,2] nParameters = len(orderList) covariateName = "t" regressorNames = ["1", "t^2"] designMatrix = np.empty((self.nObservations, nParameters)) for n in range(len(orderList)): designMatrix[:,n] = self.time**orderList[n] # Assert if the output is what it should be polyModel = PolynomialModel(self.time, covariateName, orderList) self.assertTrue(polyModel.nParameters() == nParameters) self.assertTrue(polyModel.regressorNames() == regressorNames) self.assertTrue(polyModel.nObservations() == self.nObservations) self.assertTrue(np.alltrue(polyModel.designMatrix() == designMatrix))