if success[0] != -1: templateInfo[success[0]] = aTemplateInfo inout.save_info(tempInfo_saved_to.format(obj_id, radius), templateInfo) detector.writeClasses(template_saved_to) # clear to save RAM detector.clear_classes() fbo.deactivate() window.close() elapsed_time = time.time() - start_time print('train time: {}\n'.format(elapsed_time)) if mode == 'test': poseRefine = linemodLevelup_pybind.poseRefine() im_size = dp['test_im_size'] shape = (im_size[1], im_size[0]) print('test img size: {}'.format(shape)) # Frame buffer object, bind here to avoid memory leak, maybe? window = renderer.app.Window(visible=False) color_buf = np.zeros((shape[0], shape[1], 4), np.float32).view(renderer.gloo.TextureFloat2D) depth_buf = np.zeros((shape[0], shape[1]), np.float32).view(renderer.gloo.DepthTexture) fbo = renderer.gloo.FrameBuffer(color=color_buf, depth=depth_buf) fbo.activate() use_image_subset = True if use_image_subset: im_ids_sets = inout.load_yaml(dp['test_set_fpath'])
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) objIds = [] rgb = None depth = None lock = False bridge = CvBridge() readTemplFrom = './yaml/%s_templ.yaml' readInfoFrom = './yaml/{}_info.yaml' readModelFrom = './models/{0}/{0}.fly' K_cam = None detector = linemodLevelup_pybind.Detector() poseRefine = linemodLevelup_pybind.poseRefine() detector.readClasses(objIds, readTemplFrom) infos = {} models = {} for id in objIds: model = inout.load_ply(readModelFrom.format(id)) models[id] = model templateInfo = inout.load_info(readInfoFrom.format(id)) infos[id] = templateInfo def nms_norms(ts, scores, thresh): order = scores.argsort()[::-1] keep = [] while order.size > 0: # magic: order[[]] = []