コード例 #1
0
 def testEvolvedTransformerEncoderLayerConstruction(self):
   p = layers_with_attention.EvolvedTransformerEncoderLayer.Params()
   p.name = 'evolved_transformer_encoder'
   p.source_dim = 4
   p.transformer_tpl.tr_fflayer_tpl.hidden_dim = 7
   p.transformer_tpl.tr_atten_tpl.num_attention_heads = 2
   _ = layers_with_attention.EvolvedTransformerEncoderLayer(p)
コード例 #2
0
    def testEvolvedTransformerEncoderLayerFProp(self):
        with self.session(use_gpu=True) as sess:
            np.random.seed(6348575)
            depth = 4
            p = layers_with_attention.EvolvedTransformerEncoderLayer.Params()
            p.name = 'evolved_transformer_encoder'
            p.source_dim = depth
            p.transformer_tpl.tr_fflayer_tpl.hidden_dim = 7
            p.transformer_tpl.tr_atten_tpl.num_attention_heads = 2
            transformer = layers_with_attention.EvolvedTransformerEncoderLayer(
                p)

            (source_vecs, source_padding, aux_vecs,
             aux_paddings) = self._testTransformerAttentionLayerInputs(
                 depth=depth)

            h, probs = transformer.FPropDefaultTheta(source_vecs,
                                                     source_padding,
                                                     aux_vecs=aux_vecs,
                                                     aux_paddings=aux_paddings)

            tf.global_variables_initializer().run()
            actual_layer_output, actual_prob_output = sess.run([h, probs])
            tf.logging.info(np.array_repr(actual_layer_output))
            tf.logging.info(np.array_repr(actual_prob_output))
            # pylint: disable=bad-whitespace
            # pyformat: disable
            expected_layer_output = [
                [[0.32970679, 0.07163108, 2.27543545, -1.23836803],
                 [-1.1963284, -1.68216836, 0.8141135, 1.22242999]],
                [[0.33281779, 0.18915993, 2.21856713, -1.24962616],
                 [-0.39842927, 0.61820436, 0.13190651, -0.27921003]],
                [[2.01548862, 0.57699746, -0.19467634, -1.54167116],
                 [-1.4074955, 0.02095264, -0.84756052, 0.59144902]],
                [[-0.70480233, -0.51531404, 2.22327709, -0.4005008],
                 [0.78482121, -1.17252493, -1.61011922, 0.16484746]],
                [[0.13012397, 0.5342291, 1.05864811, -0.61784816],
                 [-1.50333738, -0.31062198, -0.83974272, 1.92515945]]
            ]
            expected_prob_output = [
                [[0.25908554, 0.25745448, 0., 0., 0.48345995],
                 [0., 0.24002701, 0.24501088, 0.51496214, 0.]],
                [[0.26010522, 0.2584973, 0., 0., 0.48139751],
                 [0., 0.25460896, 0.42372373, 0.32166731, 0.]],
                [[0.3834559, 0.3857061, 0., 0., 0.23083803],
                 [0., 0.18320519, 0.39236432, 0.42443043, 0.]],
                [[0.30031767, 0.29874057, 0., 0., 0.40094173],
                 [0., 0.45309052, 0.30999154, 0.23691788, 0.]],
                [[0.18247566, 0.18200508, 0., 0., 0.63551933],
                 [0., 0.16233803, 0.33563358, 0.50202835, 0.]]
            ]
            # pyformat: enable
            # pylint: enable=bad-whitespace
            self.assertAllClose(expected_layer_output, actual_layer_output)
            self.assertAllClose(expected_prob_output, actual_prob_output)
コード例 #3
0
  def testEvolvedTransformerEncoderLayerFProp(self):
    with self.session(use_gpu=True) as sess:
      np.random.seed(6348575)
      depth = 4
      p = layers_with_attention.EvolvedTransformerEncoderLayer.Params()
      p.name = 'evolved_transformer_encoder'
      p.source_dim = depth
      p.transformer_tpl.tr_atten_tpl.num_attention_heads = 2
      transformer = layers_with_attention.EvolvedTransformerEncoderLayer(p)

      (source_vecs, source_padding, aux_vecs,
       aux_paddings) = self._testTransformerAttentionLayerInputs(depth=depth)

      h, probs = transformer.FPropDefaultTheta(
          source_vecs,
          source_padding,
          aux_vecs=aux_vecs,
          aux_paddings=aux_paddings)

      tf.global_variables_initializer().run()
      actual_layer_output, actual_prob_output = sess.run([h, probs])
      tf.logging.info(np.array_repr(actual_layer_output))
      tf.logging.info(np.array_repr(actual_prob_output))
      # pylint: disable=bad-whitespace
      # pyformat: disable
      expected_layer_output = [
          [[-1.66072488, -0.68993098,  2.21474361, -1.19416285],
           [-1.19632852, -1.68216848,  0.81411338,  1.22243011]],
          [[-1.63495326, -0.59461731,  2.21768641, -1.27701926],
           [-1.21189928,  0.10466897, -0.2177283 ,  0.55320591]],
          [[ 2.01548862,  0.57699752, -0.19467634, -1.54167104],
           [-0.7504791 , -0.24882942, -1.03441   ,  1.34467971]],
          [[-0.70480233, -0.51531398,  2.22327709, -0.40050077],
           [ 1.80162501, -1.46674573, -1.71554327,  0.16294499]],
          [[-1.31785309,  0.02877033,  0.77593923,  0.23810911],
           [-1.5033375 , -0.3106221 , -0.83974278,  1.92515957]]]
      expected_prob_output = [
          [[ 0.25908554,  0.25745451,  0.        ,  0.        ,  0.48345995],
           [ 0.        ,  0.24002703,  0.24501085,  0.51496214,  0.        ]],
          [[ 0.26010525,  0.2584973 ,  0.        ,  0.        ,  0.48139751],
           [ 0.        ,  0.25460899,  0.4237237 ,  0.32166725,  0.        ]],
          [[ 0.3834559 ,  0.38570607,  0.        ,  0.        ,  0.23083803],
           [ 0.        ,  0.18320528,  0.39236429,  0.42443043,  0.        ]],
          [[ 0.30031765,  0.29874057,  0.        ,  0.        ,  0.40094173],
           [ 0.        ,  0.45309049,  0.3099916 ,  0.23691791,  0.        ]],
          [[ 0.18247566,  0.18200508,  0.        ,  0.        ,  0.63551933],
           [ 0.        ,  0.16233809,  0.33563358,  0.50202835,  0.        ]]]
      # pyformat: enable
      # pylint: enable=bad-whitespace
      self.assertAllClose(expected_layer_output, actual_layer_output)
      self.assertAllClose(expected_prob_output, actual_prob_output)