コード例 #1
0
  def testEvalExpr(self):
    x = symbolic.Symbol('x')
    y = symbolic.Symbol('y')
    xy = x * y

    # Without symbol-to-value map.
    self.assertEqual(xy, symbolic.ToStatic(xy))
    self.assertEqual(xy, symbolic.ToTensor(xy))

    with symbolic.SymbolToValueMap(symbolic.STATIC_VALUES, {x: 2, y: 3}):
      self.assertEqual(symbolic.ToStatic(xy), 6)
      # The inner map overrides the outer map.
      with symbolic.SymbolToValueMap(symbolic.STATIC_VALUES, {x: 5, y: 6}):
        self.assertEqual(symbolic.ToStatic(xy), 30)
      # Back to the outer map.
      self.assertEqual(symbolic.ToStatic(xy), 6)

    # EvalExpr can also evaluate a symbolic expression to a
    # Tensor.
    a = tf.placeholder(tf.float32)
    b = tf.placeholder(tf.float32)
    with symbolic.SymbolToValueMap(symbolic.TENSOR_VALUES, {x: a, y: b}):
      with symbolic.SymbolToValueMap(symbolic.STATIC_VALUES, {x: 2, y: 3}):
        # Value maps of different types do not affect each other.
        self.assertEqual(symbolic.ToStatic(xy), 6)
        ab = symbolic.ToTensor(xy)
        self.assertIsInstance(ab, tf.Tensor)
        with self.session() as sess:
          self.assertEqual(12, sess.run(ab, {a: 3, b: 4}))

      # EvalExpr supports partial evaluation.
      with symbolic.SymbolToValueMap(symbolic.STATIC_VALUES, {y: 3}):
        x3 = symbolic.ToStatic(xy)
        with symbolic.SymbolToValueMap(symbolic.STATIC_VALUES, {x: 9}):
          self.assertEqual(27, symbolic.ToStatic(x3))
コード例 #2
0
ファイル: builder_layers.py プロジェクト: vcj-huy/lingvo
  def FProp(self, theta, inputs):
    """Apply projection to inputs.

    Args:
      theta: A NestedMap object containing weights' values of this layer and its
        children layers.
      inputs: The inputs tensor.  Shaped [..., input_dims].

    Returns:
      Projected inputs.
    """
    p = self.params
    with tf.name_scope(p.name):
      computation_cost.Add(
          self, 'flops',
          tf.reduce_prod(tf.cast(tf.shape(inputs)[:-1], tf.int64)) *
          tf.cast(symbolic.ToTensor(p.input_dims * p.output_dims), tf.int64) *
          2)
      return py_utils.ProjectLastDim(inputs, theta.w, p.input_dims,
                                     p.output_dims)