コード例 #1
0
ファイル: merge.py プロジェクト: AlexanderYAPPO/lingvodoc
def merge_suggestions(request):  # TODO: test
    req = request.json
    entity_type_primary = req.get("entity_type_primary") or "Transcription"
    entity_type_secondary = req.get("entity_type_secondary") or "Translation"
    threshold = req["threshold"] or 0.2
    levenstein = req["levenstein"] or 1
    client_id = req["client_id"]
    object_id = req["object_id"]
    lexes = list(
        DBSession.query(LexicalEntry)
        .filter_by(parent_client_id=client_id, parent_object_id=object_id, marked_for_deletion=False)
        .all()
    )
    if not lexes:
        return json.dumps([])
    # first_persp = json.loads(lexes[0].additional_metadata)['came_from']
    lexes_1 = [o.track(False) for o in lexes]
    remove_deleted(lexes_1)
    lexes_2 = list(lexes_1)

    def parse_response(elem):
        words = filter(
            lambda x: x["entity_type"] == entity_type_primary and not x["marked_for_deletion"], elem["contains"]
        )
        words = map(lambda x: x["content"], words)
        trans = filter(
            lambda x: x["entity_type"] == entity_type_secondary and not x["marked_for_deletion"], elem["contains"]
        )
        trans = map(lambda x: x["content"], trans)
        tuples_res = [
            (i_word, i_trans, (elem["client_id"], elem["object_id"])) for i_word in words for i_trans in trans
        ]
        return tuples_res

    tuples_1 = [parse_response(i) for i in lexes_1]
    tuples_1 = [item for sublist in tuples_1 for item in sublist]
    tuples_2 = [parse_response(i) for i in lexes_2]
    tuples_2 = [item for sublist in tuples_2 for item in sublist]

    def get_dict(elem):
        return {
            "suggestion": [
                {"lexical_entry_client_id": elem[0][0], "lexical_entry_object_id": elem[0][1]},
                {"lexical_entry_client_id": elem[1][0], "lexical_entry_object_id": elem[1][1]},
            ],
            "confidence": elem[2],
        }

    if (not tuples_1) or (not tuples_2):
        return {}
    results = [get_dict(i) for i in mergeDicts(tuples_1, tuples_2, float(threshold), int(levenstein))]
    results = sorted(results, key=lambda k: k["confidence"])
    return results
コード例 #2
0
ファイル: merge.py プロジェクト: ispras/lingvodoc
def merge_suggestions_old(request):
    subreq = Request.blank('/dictionary/' + request.matchdict.get('dictionary_client_id_1') + '/' +
    request.matchdict.get('dictionary_object_id_1') + '/perspective/' +
    request.matchdict.get('perspective_client_id_1') + '/' +
    request.matchdict.get('perspective_object_id_1') + '/all')
    subreq.method = 'GET'
    response_1 = request.invoke_subrequest(subreq).json
    subreq = Request.blank('/dictionary/' + request.matchdict.get('dictionary_client_id_2') + '/' +
    request.matchdict.get('dictionary_object_id_2') + '/perspective/' +
    request.matchdict.get('perspective_client_id_2') + '/' +
    request.matchdict.get('perspective_object_id_2') + '/all')
    subreq.method = 'GET'
    response_2 = request.invoke_subrequest(subreq).json
    #entity_type_primary = 'Word'
    #entity_type_secondary = 'Transcription'
    #threshold = 0.2
    #levenstein = 2
    entity_type_primary = request.matchdict.get('entity_type_primary')
    entity_type_secondary = request.matchdict.get('entity_type_secondary')
    threshold = request.matchdict.get('threshold')
    levenstein = request.matchdict.get('levenstein')
    def parse_response(elem):
        words = filter(lambda x: x['entity_type'] == entity_type_primary and not x['marked_for_deletion'], elem['contains'])
        words = map(lambda x: x['content'], words)
        trans = filter(lambda x: x['entity_type'] == entity_type_secondary and not x['marked_for_deletion'], elem['contains'])
        trans = map(lambda x: x['content'], trans)
        tuples_res = [(i_word, i_trans, (elem['client_id'], elem['object_id'])) for i_word in words for i_trans in trans]
        return tuples_res
    tuples_1 = [parse_response(i) for i in response_1['lexical_entries']]
    tuples_1 = [item for sublist in tuples_1 for item in sublist]
    tuples_2 = [parse_response(i) for i in response_2['lexical_entries']]
    tuples_2 = [item for sublist in tuples_2 for item in sublist]
    def get_dict(elem):
        return {'suggestion': [
            {'lexical_entry_client_id': elem[0][0], 'lexical_entry_object_id': elem[0][1]},
            {'lexical_entry_client_id': elem[1][0], 'lexical_entry_object_id': elem[1][1]}
        ], 'confidence': elem[2]}
    results = [get_dict(i) for i in mergeDicts(tuples_1, tuples_2, float(threshold), int(levenstein))]
    return json.dumps(results)
コード例 #3
0
ファイル: merge.py プロジェクト: AlexanderYAPPO/lingvodoc
def merge_suggestions_old(request):
    subreq = Request.blank(
        "/dictionary/"
        + request.matchdict.get("dictionary_client_id_1")
        + "/"
        + request.matchdict.get("dictionary_object_id_1")
        + "/perspective/"
        + request.matchdict.get("perspective_client_id_1")
        + "/"
        + request.matchdict.get("perspective_object_id_1")
        + "/all"
    )
    subreq.method = "GET"
    response_1 = request.invoke_subrequest(subreq).json
    subreq = Request.blank(
        "/dictionary/"
        + request.matchdict.get("dictionary_client_id_2")
        + "/"
        + request.matchdict.get("dictionary_object_id_2")
        + "/perspective/"
        + request.matchdict.get("perspective_client_id_2")
        + "/"
        + request.matchdict.get("perspective_object_id_2")
        + "/all"
    )
    subreq.method = "GET"
    response_2 = request.invoke_subrequest(subreq).json
    # entity_type_primary = 'Word'
    # entity_type_secondary = 'Transcription'
    # threshold = 0.2
    # levenstein = 2
    entity_type_primary = request.matchdict.get("entity_type_primary")
    entity_type_secondary = request.matchdict.get("entity_type_secondary")
    threshold = request.matchdict.get("threshold")
    levenstein = request.matchdict.get("levenstein")

    def parse_response(elem):
        words = filter(
            lambda x: x["entity_type"] == entity_type_primary and not x["marked_for_deletion"], elem["contains"]
        )
        words = map(lambda x: x["content"], words)
        trans = filter(
            lambda x: x["entity_type"] == entity_type_secondary and not x["marked_for_deletion"], elem["contains"]
        )
        trans = map(lambda x: x["content"], trans)
        tuples_res = [
            (i_word, i_trans, (elem["client_id"], elem["object_id"])) for i_word in words for i_trans in trans
        ]
        return tuples_res

    tuples_1 = [parse_response(i) for i in response_1["lexical_entries"]]
    tuples_1 = [item for sublist in tuples_1 for item in sublist]
    tuples_2 = [parse_response(i) for i in response_2["lexical_entries"]]
    tuples_2 = [item for sublist in tuples_2 for item in sublist]

    def get_dict(elem):
        return {
            "suggestion": [
                {"lexical_entry_client_id": elem[0][0], "lexical_entry_object_id": elem[0][1]},
                {"lexical_entry_client_id": elem[1][0], "lexical_entry_object_id": elem[1][1]},
            ],
            "confidence": elem[2],
        }

    results = [get_dict(i) for i in mergeDicts(tuples_1, tuples_2, float(threshold), int(levenstein))]
    return json.dumps(results)