コード例 #1
0
def test_TauEstimator_alone():
    for i in range(2, TESTING_ITERATIONS):

        # tests all regularizations
        for reg in (lp.Tikhonov(), lp.Lasso()):
            # tests all loss functions
            for loss in LOSS_FUNCTIONS:

                # intiates random inputs
                lamb = randint(0, 20)
                c1 = np.random.uniform(0.1, 5)
                c2 = np.random.uniform(0.1, 5)

                # clippings are randomly chosen between a random number or None with predominance for number
                clipping_1 = random.choice([c1, c1, c1, None])
                clipping_2 = random.choice([c2, c2, c2, None])

                # creates a tau instance
                tau_estimator = lp.TauEstimator(
                    loss_function=loss,
                    regularization=reg,
                    lamb=lamb,
                    clipping_1=clipping_1,
                    clipping_2=clipping_2
                )  # creates a tau-estimator with each of the loss functions

                # random (A,y) tuple with i rows and A has a random number of columns between i and i+100
                tau_estimator.estimate(
                    # A=np.random.rand(i, i + randint(0, 100)),
                    a=np.random.rand(i, i + randint(0, 100)),
                    y=np.random.rand(i).reshape(-1))
コード例 #2
0
def test_score_function_is_odd():
    for loss in LOSS_FUNCTIONS:

        my_tau = lp.TauEstimator(loss_function=loss)

        # print 'loss = ', loss

        for i in range(2, TESTING_ITERATIONS):

            # generates a random vector of size i with negative and positive values
            y = np.random.randn(100)

            score = my_tau.score_function(y)

            # print y, score

            for i in range(0, score.__len__()):
                assert np.sign(score[i]) == np.sign(y[i])
コード例 #3
0
def test_tau_scale():
    for i in range(2, TESTING_ITERATIONS):
        # generates random clipping between 0.1 and 5
        clipping_1 = np.random.uniform(0.1, 5)
        clipping_2 = np.random.uniform(0.1, 5)

        # generates a random vector of size between 0 and 100
        x = np.random.rand(randint(1, 100))

        my_tau = lp.TauEstimator(loss_function=lp.Optimal,
                                 clipping_1=clipping_1,
                                 clipping_2=clipping_2)

        linvpy_t = my_tau.tau_scale(x)
        util_t = util_l.tauscale(x,
                                 lossfunction='optimal',
                                 b=0.5,
                                 clipping=(clipping_1, clipping_2))

        np.testing.assert_allclose(linvpy_t, util_t)
コード例 #4
0
def test_scorefunction():
    for i in range(2, TESTING_ITERATIONS):
        # CLIPPINGS = two random numbers between 0.1 and 5
        CLIPPINGS = (np.random.uniform(0.1, 5), np.random.uniform(0.1, 5))

        # creates an instance of tau estimator with the two random clippings
        tau = lp.TauEstimator(clipping_1=CLIPPINGS[0],
                              clipping_2=CLIPPINGS[1],
                              loss_function=lp.Optimal)

        # y = random vector of size between 0 and 100
        y = np.random.rand(randint(1, 100))

        # toolbox's scorefunction
        score_util = util.scorefunction(np.asarray(y), 'tau', CLIPPINGS)

        # linvpy's scorefunction
        score_lp = tau.score_function(y)

        # returns an error if the toolbox's scorefunction and lp's scorefunction are not equal
        np.testing.assert_allclose(score_lp, score_util)
コード例 #5
0
def test_mscale():
    for i in range(2, TESTING_ITERATIONS):
        # generates a random clipping between 0.1 and 5
        CLIPPING = np.random.uniform(0.1, 5)

        # creates an instance of TauEstimator
        tau = lp.TauEstimator(clipping_1=CLIPPING,
                              clipping_2=CLIPPING,
                              loss_function=lp.Optimal)

        # generates a random vector of size between 0 and 100
        y = np.random.rand(randint(1, 100))

        # computes the mscale for linvpy and toolbox
        linvpy_scale = tau.m_scale(y)
        toolbox_scale = util.mscaleestimator(u=y,
                                             tolerance=1e-5,
                                             b=0.5,
                                             clipping=CLIPPING,
                                             kind='optimal')

        # verifies that both results are the same
        assert toolbox_scale == linvpy_scale
コード例 #6
0
def test_TauEstimator_VS_Marta():
    for i in range(2, TESTING_ITERATIONS):
        # generates random clipping between 0.1 and 5
        clipping_1 = np.random.uniform(0.1, 5)
        clipping_2 = np.random.uniform(0.1, 5)

        # generates a random n_initial_x
        n_initial_x = 1

        # generates a random matrix of size i x i + random(0,100)
        A = np.random.rand(i, i + randint(0, 10))

        # generates a random vector of size i
        y = np.random.rand(i)

        my_tau = lp.TauEstimator(loss_function=lp.Optimal,
                                 clipping_1=clipping_1,
                                 clipping_2=clipping_2)

        linvpy_output = my_tau.estimate(a=A, y=y)

        marta_t = lp_l.basictau(a=A,
                                y=np.matrix(y),
                                loss_function='optimal',
                                b=0.5,
                                clipping=(clipping_1, clipping_2),
                                ninitialx=n_initial_x)

        # print 'LinvPy Tau result = ', linvpy_output
        # print 'Marta Tau result = ', marta_t
        # print '========================'
        # print '========================'
        # print '========================'
        # print '========================'

        # asserts xhat are the same
        np.testing.assert_allclose(linvpy_output[0].reshape(-1, 1), marta_t[0])
コード例 #7
0
ファイル: test.py プロジェクト: jmendozais/linvpy
        return vfunc(array)

    # Define your psi function as the derivative of the rho function : you can
    # copy paste this and just change what's inside the unit_rho
    def psi(self, array):
        # rho function of your loss function on ONE single element
        def unit_psi(element):
            # Simply return the clipping for example
            return 1

        # Vectorize the function
        vfunc = np.vectorize(unit_psi)
        return vfunc(array)


custom_tau = lp.TauEstimator(loss_function=CustomLoss)
print custom_tau.estimate(a, y)


# Define your own regularization
class CustomRegularization(lp.Regularization):
    pass

    # Define your regularization function here
    def regularize(self, a, y, lamb=0):
        return np.ones(a.shape[1])


# Create your custom tau estimator with custom loss and regularization functions
# Pay attenation to pass the loss function as a REFERENCE (without the "()"
# after the name, and the regularization as an OBJECT, i.e. with the "()").
コード例 #8
0
def cover_fast_tau():
    my_tau = lp.TauEstimator()
    A = np.matrix([[2, 2], [3, 4], [7, 6]])
    y = np.array([1, 4, 3])
    my_tau.fast_estimate(A, y)