"class_based_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) import pdb pdb.set_trace() model = NeuralLM(vocab.size) model.stack( RNN(hidden_size=100, output_type="sequence", hidden_activation='sigmoid', persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), ClassOutputLayer(output_size=100, class_size=100)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer( model, { "learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7 }) annealer = LearningRateAnnealer() trainer.run(lmdata, epoch_controllers=[annealer])
logging.basicConfig(level=logging.INFO) default_model = os.path.join(os.path.dirname(__file__), "models", "lstm_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) model = NeuralLM(vocab.size, test_data=None) model.stack( LSTM(hidden_size=100, output_type="sequence", persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), FullOutputLayer(vocab.size)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer( model, { "learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7 }) annealer = LearningRateAnnealer(trainer) trainer.run(lmdata, controllers=[annealer])
default_model = os.path.join(os.path.dirname(__file__), "models", "baseline_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) model = NeuralLM(vocab.size) model.stack( RNN(hidden_size=100, output_type="sequence", hidden_activation="sigmoid", persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), FullOutputLayer(vocab.size)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer( model, { "learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7 }) annealer = LearningRateAnnealer() trainer.run(lmdata, controllers=[annealer])
from layers import FullOutputLayer logging.basicConfig(level=logging.INFO) default_model = os.path.join(os.path.dirname(__file__), "models", "baseline_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) model = NeuralLM(vocab.size) model.stack(RNN(hidden_size=100, output_type="sequence", hidden_activation="sigmoid", persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), FullOutputLayer(vocab.size)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7}) annealer = LearningRateAnnealer(trainer) trainer.run(lmdata, controllers=[annealer]) model.save_params(default_model)
default_model = os.path.join(os.path.dirname(__file__), "models", "lstm_rnnlmnew.gz") default_dict = '/home/tangyaohua/dl4mt/data/larger.corpus/vocab.chinese.pkl' # default_dict = '/home/tangyh/Dropbox/PycharmProjects/dl4mt/session2/lm/resources/vocab.chinese.pkl' if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default='') ap.add_argument("--dictpath", default=default_dict) ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_datagivendict(dictpath=args.dictpath, small=args.small, history_len=5, batch_size=16) inputx=T.imatrix('x') print len(vocab), 'len(vocab)' model = NeuralLM(len(vocab), test_data=None, input_tensor=inputx) model.stack(LSTM(hidden_size=100, output_type="sequence", persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), FullOutputLayer(len(vocab))) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7}) annealer = LearningRateAnnealer(trainer) trainer.run(lmdata, controllers=[annealer]) model.save_params(default_model)
from deepy.layers import RNN, Dense logging.basicConfig(level=logging.INFO) resource_dir = os.path.abspath(os.path.dirname(__file__)) + os.sep + "resources" vocab_path = os.path.join(resource_dir, "ptb.train.txt") train_path = os.path.join(resource_dir, "ptb.train.txt") valid_path = os.path.join(resource_dir, "ptb.valid.txt") vocab = Vocab(char_based=True) vocab.load(vocab_path, max_size=1000) model = NeuralLM(input_dim=vocab.size, input_tensor=3) model.stack( RNN(hidden_size=100, output_type="sequence"), RNN(hidden_size=100, output_type="sequence"), Dense(vocab.size, "softmax")) if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default=os.path.join(os.path.dirname(__file__), "models", "char_rnn_model1.gz")) ap.add_argument("--sample", default="") args = ap.parse_args() if os.path.exists(args.model): model.load_params(args.model) lmdata = LMDataset(vocab, train_path, valid_path, history_len=30, char_based=True, max_tokens=300) batch = SequentialMiniBatches(lmdata, batch_size=20)
logging.basicConfig(level=logging.INFO) default_model = os.path.join(os.path.dirname(__file__), "models", "class_based_rnnlm.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default="") ap.add_argument("--small", action="store_true") args = ap.parse_args() vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) import pdb; pdb.set_trace() model = NeuralLM(vocab.size) model.stack(RNN(hidden_size=100, output_type="sequence", hidden_activation='sigmoid', persistent_state=True, batch_size=lmdata.size, reset_state_for_input=0), ClassOutputLayer(output_size=100, class_size=100)) if os.path.exists(args.model): model.load_params(args.model) trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2), "weight_l2": 1e-7}) annealer = LearningRateAnnealer() trainer.run(lmdata, controllers=[annealer]) model.save_params(default_model)
from deepy.trainers import SGDTrainer, LearningRateAnnealer from deepy.layers import LSTM, Dense logging.basicConfig(level=logging.INFO) resource_dir = os.path.abspath( os.path.dirname(__file__)) + os.sep + "resources" vocab_path = os.path.join(resource_dir, "ptb.train.txt") train_path = os.path.join(resource_dir, "ptb.train.txt") valid_path = os.path.join(resource_dir, "ptb.valid.txt") vocab = Vocab(char_based=True) vocab.load(vocab_path, max_size=1000) model = NeuralLM(input_dim=vocab.size, input_tensor=3) model.stack(LSTM(hidden_size=100, output_type="sequence"), Dense(vocab.size, activation="softmax")) default_model = os.path.join(os.path.dirname(__file__), "models", "char_lstm_model1.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default=default_model) ap.add_argument("--sample", default="") args = ap.parse_args() if os.path.exists(args.model): model.load_params(args.model) lmdata = LMDataset(vocab, train_path,
logging.basicConfig(level=logging.INFO) resource_dir = os.path.abspath(os.path.dirname(__file__)) + os.sep + "resources" vocab_path = os.path.join(resource_dir, "ptb.train.txt") train_path = os.path.join(resource_dir, "ptb.train.txt") valid_path = os.path.join(resource_dir, "ptb.valid.txt") vocab = Vocab(char_based=True) vocab.load(vocab_path, max_size=1000) model = NeuralLM(input_dim=vocab.size, input_tensor=3) model.stack( RNN(hidden_size=100, output_type="sequence"), RNN(hidden_size=100, output_type="sequence"), Dense(vocab.size, "softmax"), ) if __name__ == "__main__": ap = ArgumentParser() ap.add_argument("--model", default=os.path.join(os.path.dirname(__file__), "models", "char_rnn_model1.gz")) ap.add_argument("--sample", default="") args = ap.parse_args() if os.path.exists(args.model): model.load_params(args.model) lmdata = LMDataset(vocab, train_path, valid_path, history_len=30, char_based=True, max_tokens=300) batch = SequentialMiniBatches(lmdata, batch_size=20)
from deepy.trainers import SGDTrainer, LearningRateAnnealer from deepy.layers import LSTM, Dense logging.basicConfig(level=logging.INFO) resource_dir = os.path.abspath(os.path.dirname(__file__)) + os.sep + "resources" vocab_path = os.path.join(resource_dir, "ptb.train.txt") train_path = os.path.join(resource_dir, "ptb.train.txt") valid_path = os.path.join(resource_dir, "ptb.valid.txt") vocab = Vocab(char_based=True) vocab.load(vocab_path, max_size=1000) model = NeuralLM(input_dim=vocab.size, input_tensor=3) model.stack(LSTM(hidden_size=100, output_type="sequence"), Dense(vocab.size, activation="softmax")) default_model = os.path.join(os.path.dirname(__file__), "models", "char_lstm_model1.gz") if __name__ == '__main__': ap = ArgumentParser() ap.add_argument("--model", default=default_model) ap.add_argument("--sample", default="") args = ap.parse_args() if os.path.exists(args.model): model.load_params(args.model) lmdata = LMDataset(vocab, train_path, valid_path, history_len=30, char_based=True, max_tokens=300) batch = SequentialMiniBatches(lmdata, batch_size=20)