def newton_plot(self): S = [QQ(s) for s in self.slopes] C = Counter(S) pts = [(0,0)] x = y = 0 for s in sorted(C): c = C[s] x += c y += c*s pts.append((x,y)) L = Graphics() L += line([(0,0),(0,y+0.2)],color="grey") for i in range(1,y+1): L += line([(0,i),(0.06,i)],color="grey") for i in range(1,C[0]): L += line([(i,0),(i,0.06)],color="grey") for i in range(len(pts)-1): P = pts[i] Q = pts[i+1] for x in range(P[0],Q[0]+1): L += line([(x,P[1]),(x,P[1] + (x-P[0])*(Q[1]-P[1])/(Q[0]-P[0]))],color="grey") for y in range(P[1],Q[1]): L += line([(P[0] + (y-P[1])*(Q[0]-P[0])/(Q[1]-P[1]),y),(Q[0],y)],color="grey") L += line(pts, thickness = 2) L.axes(False) L.set_aspect_ratio(1) return encode_plot(L, pad=0, pad_inches=0, bbox_inches='tight')
def newton_plot(self): S = [QQ(s) for s in self.polygon_slopes] C = Counter(S) pts = [(0, 0)] x = y = 0 for s in sorted(C): c = C[s] x += c y += c * s pts.append((x, y)) L = Graphics() L += line([(0, 0), (0, y + 0.2)], color="grey") for i in range(1, y + 1): L += line([(0, i), (0.06, i)], color="grey") for i in range(1, C[0]): L += line([(i, 0), (i, 0.06)], color="grey") for i in range(len(pts) - 1): P = pts[i] Q = pts[i + 1] for x in range(P[0], Q[0] + 1): L += line( [(x, P[1]), (x, P[1] + (x - P[0]) * (Q[1] - P[1]) / (Q[0] - P[0]))], color="grey", ) for y in range(P[1], Q[1]): L += line( [(P[0] + (y - P[1]) * (Q[0] - P[0]) / (Q[1] - P[1]), y), (Q[0], y)], color="grey", ) L += line(pts, thickness=2) L.axes(False) L.set_aspect_ratio(1) return encode_plot(L, pad=0, pad_inches=0, bbox_inches="tight")
def mu_portrait(n): """ returns an encoded scatter plot of the nth roots of unity in the complex plane """ if n <= 120: plot = list_plot([(cos(2*pi*m/n),sin(2*pi*m/n)) for m in range(n)],pointsize=30+60/n, axes=False) else: plot = circle((0,0),1,thickness=3) plot.xmin(-1); plot.xmax(1); plot.ymin(-1); plot.ymax(1) plot.set_aspect_ratio(4.0/3.0) return encode_plot(plot)
def nu1_mu_portrait(n): """ returns an encoded scatter plot of the nth roots of unity in the complex plane """ if n == 1: return db.gps_sato_tate.lookup('1.2.1.2.1a').get('trace_histogram') if n <= 120: plot = sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)]) + circle((0,0),0.1,rgbcolor=(0,0,0),fill=True) else: plot = circle((0,0),2,fill=True) plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2) plot.set_aspect_ratio(4.0/3.0) plot.axes(False) return encode_plot(plot)
def nu1_mu_portrait(n): """ returns an encoded scatter plot of the nth roots of unity in the complex plane """ if n == 1: return db.gps_st.lookup('1.2.B.2.1a').get('trace_histogram') if n <= 120: plot = sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)]) + circle((0,0),0.1,rgbcolor=(0,0,0),fill=True) else: plot = circle((0,0),2,fill=True) plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2) plot.set_aspect_ratio(4.0/3.0) plot.axes(False) return encode_plot(plot)
def su2_mu_portrait(n): """ returns an encoded line plot of SU(2) x mu(n) in the complex plane """ if n == 1: return db.gps_st.lookup('1.2.A.1.1a').get('trace_histogram') if n <= 120: plot = sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)]) else: plot = circle((0,0),2,fill=True) plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2) plot.set_aspect_ratio(4.0/3.0) plot.axes(False) return encode_plot(plot)
def su2_mu_portrait(n): """ returns an encoded line plot of SU(2) x mu(n) in the complex plane """ if n == 1: return db.gps_sato_tate.lookup('1.2.3.1.1a').get('trace_histogram') if n <= 120: plot = sum([line2d([(-2*cos(2*pi*m/n),-2*sin(2*pi*m/n)),(2*cos(2*pi*m/n),2*sin(2*pi*m/n))],thickness=3) for m in range(n)]) else: plot = circle((0,0),2,fill=True) plot.xmin(-2); plot.xmax(2); plot.ymin(-2); plot.ymax(2) plot.set_aspect_ratio(4.0/3.0) plot.axes(False) return encode_plot(plot)
def make_class(self): self.ECNF = ECNF.by_label(self.label) # Create a list of the curves in the class from the database self.db_curves = [ECNF(c) for c in db_ec().find( {'field_label' : self.field_label, 'conductor_label' : self.conductor_label, 'iso_label' : self.iso_label}).sort('number')] size = len(self.db_curves) # Extract the isogeny degree matrix from the database if possible, else create it if hasattr(self,'isogeny_matrix'): from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) else: self.isogeny_matrix = make_iso_matrix(self.db_curves) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) self.curves = [[c.short_label, c.urls['curve'], c.latex_ainvs] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf = self.field_label, conductor_label=self.conductor_label, class_label = self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf = self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.ECNF.field_label) self.field = self.ECNF.field if self.field.is_real_quadratic(): self.hmf_label = "-".join([self.field.label,self.conductor_label,self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) if self.field.is_imag_quadratic(): self.bmf_label = "-".join([self.field.label,self.conductor_label,self.iso_label]) self.friends = [] if self.field.is_real_quadratic(): self.friends += [('Hilbert Modular Form '+self.hmf_label, self.urls['hmf'])] if self.field.is_imag_quadratic(): self.friends += [('Bianchi Modular Form %s not yet available' % self.bmf_label, '')] self.properties = [('Label', self.ECNF.label), (None, self.graph_link), ('Conductor', '%s' % self.ECNF.cond) ] self.bread = [('Elliptic Curves ', url_for(".index")), (self.ECNF.field_label, self.urls['field']), (self.ECNF.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.ECNF.short_label, self.urls['class'])]
def plot(self, typ="circle"): assert typ in ['circle', 'linear', 'constant'] if typ == 'circle': G = circle_image(self.A, self.B) elif typ == 'linear': G = piecewise_linear_image(self.A, self.B) else: G = piecewise_constant_image(self.A, self.B) return encode_plot(G.plot(), pad=0, pad_inches=0, bbox_inches='tight', remove_axes=True)
def circle_plot(self): pts = [] pi = RR.pi() for angle in self.angles: angle = RR(angle)*pi c = angle.cos() s = angle.sin() if abs(s) < 0.00000001: pts.append((c,s)) else: pts.extend([(c,s),(c,-s)]) P = points(pts,size=100) + circle((0,0),1,color='black') P.axes(False) P.set_aspect_ratio(1) return encode_plot(P)
def circle_plot(self): pts = [] pi = RR.pi() for angle in self.angles: angle = RR(angle) * pi c = angle.cos() s = angle.sin() if abs(s) < 0.00000001: pts.append((c, s)) else: pts.extend([(c, s), (c, -s)]) P = points(pts, size=100) + circle((0, 0), 1, color='black') P.axes(False) P.set_aspect_ratio(1) return encode_plot(P)
def circle_plot(self): pts = [] pi = RR.pi() for angle in self.angles: angle = RR(angle) * pi c = angle.cos() s = angle.sin() if abs(s) < 0.00000001: pts.append((c, s)) else: pts.extend([(c, s), (c, -s)]) P = circle((0, 0), 1, color="black", thickness=2.5) P[0].set_zorder(-1) P += points(pts, size=300, rgbcolor="darkblue") P.axes(False) P.set_aspect_ratio(1) return encode_plot(P, pad=0, pad_inches=None, transparent=True, axes_pad=0.04)
def make_class(self): # Create a list of the curves in the class from the database self.db_curves = list(db.ec_nfcurves.search( {'field_label': self.field_label, 'conductor_norm': self.conductor_norm, 'conductor_label': self.conductor_label, 'iso_nlabel': self.iso_nlabel})) # Rank or bounds try: self.rk = web_latex(self.db_curves[0]['rank']) except KeyError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.db_curves[0]['rank_bounds']) except KeyError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not recorded" # Extract the isogeny degree matrix from the database if not hasattr(self, 'isogeny_matrix'): # this would happen if the class is initiated with a curve # which is not #1 in its class: self.isogeny_matrix = self.db_curves[0].isogeny_matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) self.one_deg = ZZ(self.class_deg).is_prime() # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(Matrix(self.isogeny_matrix)) self.field = FIELD(self.field_label) self.field_name = field_pretty(self.field_label) self.field_knowl = nf_display_knowl(self.field_label, self.field_name) def curve_url(c): return url_for(".show_ecnf", nf=c['field_label'], conductor_label=c['conductor_label'], class_label=c['iso_label'], number=c['number']) self.curves = [[c['short_label'], curve_url(c), web_ainvs(self.field_label,c['ainvs'])] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.field_label) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0,1] if totally_real: self.hmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field_label, label=self.hmf_label) lfun_url = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) origin_url = lfun_url.lstrip('/L/').rstrip('/') if sig[0] <= 2 and db.lfunc_instances.exists({'url': origin_url}): self.urls['Lfunction'] = lfun_url elif self.abs_disc ** 2 * self.conductor_norm < 40000: # we shouldn't trust the Lfun computed on the fly for large conductor self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) lfun_url = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) origin_url = lfun_url.lstrip('/L/').rstrip('/') if db.lfunc_instances.exists({'url':origin_url}): self.urls['Lfunction'] = lfun_url # most of this code is repeated in WebEllipticCurve.py # and should be refactored self.friends = [] if totally_real and 'Lfunction' not in self.urls: self.friends += [('Hilbert modular form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: if "CM" in self.label: self.friends += [('Bianchi modular form is not cuspidal', '')] elif 'Lfunction' not in self.urls: if db.bmf_forms.label_exists(self.bmf_label): self.friends += [('Bianchi modular form %s' % self.bmf_label, self.bmf_url)] else: self.friends += [('(Bianchi modular form %s)' % self.bmf_label, '')] if 'Lfunction' in self.urls: Lfun = get_lfunction_by_url(self.urls['Lfunction'].lstrip('/L').rstrip('/'), projection=['degree', 'trace_hash', 'Lhash']) instances = get_instances_by_Lhash_and_trace_hash( Lfun['Lhash'], Lfun['degree'], Lfun.get('trace_hash')) exclude={elt[1].rstrip('/').lstrip('/') for elt in self.friends if elt[1]} exclude.add(lfun_url.lstrip('/L/').rstrip('/')) self.friends += names_and_urls(instances, exclude=exclude) self.friends += [('L-function', self.urls['Lfunction'])] else: self.friends += [('L-function not available', "")] self.properties = [('Base field', self.field_name), ('Label', self.class_label), (None, self.graph_link), ('Conductor', '%s' % self.conductor_label) ] if self.rk != '?': self.properties += [('Rank', '%s' % self.rk)] else: if self.rk_bnds == 'not recorded': self.properties += [('Rank', '%s' % self.rk_bnds)] else: self.properties += [('Rank bounds', '%s' % self.rk_bnds)] self.bread = [('Elliptic curves ', url_for(".index")), (self.field_label, self.urls['field']), (self.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.short_label, self.urls['class'])]
def make_E(self): K = self.field.K() # a-invariants self.ainvs = parse_ainvs(K,self.ainvs) self.latex_ainvs = web_latex(self.ainvs) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = ideal_from_string(K,self.conductor_ideal) self.cond = web_latex(N) self.cond_norm = web_latex(self.conductor_norm) local_data = self.local_data # NB badprimes is a list of primes which divide the # discriminant of this model. At most one of these might # actually be a prime of good reduction, if the curve has no # global minimal model. badprimes = [ideal_from_string(K,ld['p']) for ld in local_data] badnorms = [ZZ(ld['normp']) for ld in local_data] mindisc_ords = [ld['ord_disc'] for ld in local_data] # Assumption: the curve models stored in the database are # either global minimal models or minimal at all but one # prime, so the list here has length 0 or 1: self.non_min_primes = [ideal_from_string(K,P) for P in self.non_min_p] self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = self.is_minimal disc_ords = [ld['ord_disc'] for ld in local_data] if not self.is_minimal: Pmin = self.non_min_primes[0] P_index = badprimes.index(Pmin) self.non_min_prime = web_latex(Pmin) disc_ords[P_index] += 12 if self.conductor_norm == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond self.fact_cond_norm = self.cond else: Nfac = Factorization([(P,ld['ord_cond']) for P,ld in zip(badprimes,local_data)]) self.fact_cond = web_latex_ideal_fact(Nfac) Nnormfac = Factorization([(q,ld['ord_cond']) for q,ld in zip(badnorms,local_data)]) self.fact_cond_norm = web_latex(Nnormfac) # D is the discriminant ideal of the model D = prod([P**e for P,e in zip(badprimes,disc_ords)], K.ideal(1)) self.disc = web_latex(D) Dnorm = D.norm() self.disc_norm = web_latex(Dnorm) if Dnorm == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc self.fact_disc_norm = self.disc else: Dfac = Factorization([(P,e) for P,e in zip(badprimes,disc_ords)]) self.fact_disc = web_latex_ideal_fact(Dfac) Dnormfac = Factorization([(q,e) for q,e in zip(badnorms,disc_ords)]) self.fact_disc_norm = web_latex(Dnormfac) if not self.is_minimal: Dmin = ideal_from_string(K,self.minD) self.mindisc = web_latex(Dmin) Dmin_norm = Dmin.norm() self.mindisc_norm = web_latex(Dmin_norm) if Dmin_norm == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc self.fact_mindisc_norm = self.mindisc else: Dminfac = Factorization([(P,e) for P,edd in zip(badprimes,mindisc_ords)]) self.fact_mindisc = web_latex_ideal_fact(Dminfac) Dminnormfac = Factorization([(q,e) for q,e in zip(badnorms,mindisc_ords)]) self.fact_mindisc_norm = web_latex(Dminnormfac) j = self.field.parse_NFelt(self.jinv) # if j: # d = j.denominator() # n = d * j # numerator exists for quadratic fields only! # g = GCD(list(n)) # n1 = n / g # self.j = web_latex(n1) # if d != 1: # if n1 > 1: # # self.j = "("+self.j+")\(/\)"+web_latex(d) # self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) # else: # self.j = web_latex(d) # if g > 1: # if n1 > 1: # self.j = web_latex(g) + self.j # else: # self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work but take too long # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1). Note that we do # store the factorization of the denominator of j and display # that, which is the most interesting part. # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # The line below will need to change once we have curves over non-quadratic fields # that contain the Hilbert class field of an imaginary quadratic field if self.signature == [0,1] and ZZ(-self.abs_disc*self.cm).is_square(): self.ST = st_link_by_name(1,2,'U(1)') else: self.ST = st_link_by_name(1,2,'N(U(1))') else: self.ST = st_link_by_name(1,2,'SU(2)') # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(self.torsion_structure) torsion_gens = [parse_point(K,P) for P in self.torsion_gens] self.torsion_gens = ",".join([web_point(P) for P in torsion_gens]) # Rank or bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.rank_bounds) except AttributeError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not available" # Generators try: gens = [parse_point(K,P) for P in self.gens] self.gens = ", ".join([web_point(P) for P in gens]) if self.rk == "?": self.reg = "not available" else: if gens: try: self.reg = self.reg except AttributeError: self.reg = "not available" pass # self.reg already set else: self.reg = 1 # otherwise we only get 1.00000... except AttributeError: self.gens = "not available" self.reg = "not available" try: if self.rank == 0: self.reg = 1 except AttributeError: pass # Local data for P,ld in zip(badprimes,local_data): ld['p'] = web_latex(P) ld['norm'] = P.norm() ld['kod'] = web_latex(ld['kod']).replace('$', '') # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote(self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0,1] if totally_real: self.hmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field=self.field_label, jinv=rename_j(j)))] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] self.friends += [('L-function', self.urls['Lfunction'])] if imag_quadratic: self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')] self.properties = [ ('Base field', self.field.field_pretty()), ('Label', self.label)] # Plot if K.signature()[0]: self.plot = encode_plot(EC_nf_plot(K,self.ainvs, self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden (can be very large) # ('j-invariant', self.j), ('CM', self.cm_bool)] if self.base_change: self.properties += [('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change]))] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code()
def make_E(self): #print("Creating ECNF object for {}".format(self.label)) #sys.stdout.flush() K = self.field.K() # a-invariants self.ainvs = parse_ainvs(K,self.ainvs) self.latex_ainvs = web_latex(self.ainvs) self.numb = str(self.number) # Conductor, discriminant, j-invariant if self.conductor_norm==1: N = K.ideal(1) else: N = ideal_from_string(K,self.conductor_ideal) # The following can trigger expensive computations! #self.cond = web_latex(N) self.cond = pretty_ideal(N) self.cond_norm = web_latex(self.conductor_norm) local_data = self.local_data # NB badprimes is a list of primes which divide the # discriminant of this model. At most one of these might # actually be a prime of good reduction, if the curve has no # global minimal model. badprimes = [ideal_from_string(K,ld['p']) for ld in local_data] badnorms = [ZZ(ld['normp']) for ld in local_data] mindisc_ords = [ld['ord_disc'] for ld in local_data] # Assumption: the curve models stored in the database are # either global minimal models or minimal at all but one # prime, so the list here has length 0 or 1: self.non_min_primes = [ideal_from_string(K,P) for P in self.non_min_p] self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = self.is_minimal disc_ords = [ld['ord_disc'] for ld in local_data] if not self.is_minimal: Pmin = self.non_min_primes[0] P_index = badprimes.index(Pmin) self.non_min_prime = pretty_ideal(Pmin) disc_ords[P_index] += 12 if self.conductor_norm == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond self.fact_cond_norm = '1' else: Nfac = Factorization([(P,ld['ord_cond']) for P,ld in zip(badprimes,local_data)]) self.fact_cond = web_latex_ideal_fact(Nfac) Nnormfac = Factorization([(q,ld['ord_cond']) for q,ld in zip(badnorms,local_data)]) self.fact_cond_norm = web_latex(Nnormfac) # D is the discriminant ideal of the model D = prod([P**e for P,e in zip(badprimes,disc_ords)], K.ideal(1)) self.disc = pretty_ideal(D) Dnorm = D.norm() self.disc_norm = web_latex(Dnorm) if Dnorm == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc self.fact_disc_norm = '1' else: Dfac = Factorization([(P,e) for P,e in zip(badprimes,disc_ords)]) self.fact_disc = web_latex_ideal_fact(Dfac) Dnormfac = Factorization([(q,e) for q,e in zip(badnorms,disc_ords)]) self.fact_disc_norm = web_latex(Dnormfac) if not self.is_minimal: Dmin = ideal_from_string(K,self.minD) self.mindisc = pretty_ideal(Dmin) Dmin_norm = Dmin.norm() self.mindisc_norm = web_latex(Dmin_norm) if Dmin_norm == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc self.fact_mindisc_norm = self.mindisc else: Dminfac = Factorization([(P,e) for P,edd in zip(badprimes,mindisc_ords)]) self.fact_mindisc = web_latex_ideal_fact(Dminfac) Dminnormfac = Factorization([(q,e) for q,e in zip(badnorms,mindisc_ords)]) self.fact_mindisc_norm = web_latex(Dminnormfac) j = self.field.parse_NFelt(self.jinv) # if j: # d = j.denominator() # n = d * j # numerator exists for quadratic fields only! # g = GCD(list(n)) # n1 = n / g # self.j = web_latex(n1) # if d != 1: # if n1 > 1: # # self.j = "("+self.j+")\(/\)"+web_latex(d) # self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) # else: # self.j = web_latex(d) # if g > 1: # if n1 > 1: # self.j = web_latex(g) + self.j # else: # self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work but take too long # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1). Note that we do # store the factorization of the denominator of j and display # that, which is the most interesting part. # Images of Galois representations if not hasattr(self,'galois_images'): #print "No Galois image data" self.galois_images = "?" self.non_surjective_primes = "?" self.galois_data = [] else: self.galois_data = [{'p': p,'image': im } for p,im in zip(self.non_surjective_primes, self.galois_images)] # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.rational_cm = K(self.cm).is_square() self.cm_sqf = ZZ(self.cm).squarefree_part() self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Galois images in CM case: if self.cm and self.galois_images != '?': self.cm_ramp = [p for p in ZZ(self.cm).support() if not p in self.non_surjective_primes] self.cm_nramp = len(self.cm_ramp) if self.cm_nramp==1: self.cm_ramp = self.cm_ramp[0] else: self.cm_ramp = ", ".join([str(p) for p in self.cm_ramp]) # Sato-Tate: # The lines below will need to change once we have curves over non-quadratic fields # that contain the Hilbert class field of an imaginary quadratic field if self.cm: if self.signature == [0,1] and ZZ(-self.abs_disc*self.cm).is_square(): self.ST = st_link_by_name(1,2,'U(1)') else: self.ST = st_link_by_name(1,2,'N(U(1))') else: self.ST = st_link_by_name(1,2,'SU(2)') # Q-curve / Base change self.qc = self.q_curve if self.qc == "?": self.qc = "not determined" elif self.qc == True: self.qc = "yes" elif self.qc == False: self.qc = "no" else: # just in case self.qc = "not determined" # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(self.torsion_structure) torsion_gens = [parse_point(K,P) for P in self.torsion_gens] self.torsion_gens = ",".join([web_point(P) for P in torsion_gens]) # Rank or bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.rank_bounds) except AttributeError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not available" # Generators try: gens = [parse_point(K,P) for P in self.gens] self.gens = ", ".join([web_point(P) for P in gens]) if self.rk == "?": self.reg = "not available" else: if gens: try: self.reg = self.reg except AttributeError: self.reg = "not available" pass # self.reg already set else: self.reg = 1 # otherwise we only get 1.00000... except AttributeError: self.gens = "not available" self.reg = "not available" try: if self.rank == 0: self.reg = 1 except AttributeError: pass # Local data for P,ld in zip(badprimes,local_data): ld['p'] = web_latex(P) ld['norm'] = P.norm() ld['kod'] = ld['kod'].replace('\\\\', '\\') ld['kod'] = web_latex(ld['kod']).replace('$', '') # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote(self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) # Isogeny information self.one_deg = ZZ(self.class_deg).is_prime() isodegs = [str(d) for d in self.isogeny_degrees if d>1] if len(isodegs)<3: self.isogeny_degrees = " and ".join(isodegs) else: self.isogeny_degrees = " and ".join([", ".join(isodegs[:-1]),isodegs[-1]]) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0,1] if totally_real: self.hmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) if sig[0] <= 2: self.urls['Lfunction'] = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) elif self.abs_disc ** 2 * self.conductor_norm < 70000: # we shouldn't trust the Lfun computed on the fly for large conductor self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) self.urls['Lfunction'] = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field=self.field_label, jinv=rename_j(j)))] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: if "CM" in self.label: self.friends += [('Bianchi Modular Form is not cuspidal', '')] else: if db.bmf_forms.label_exists(self.bmf_label): self.friends += [('Bianchi Modular Form %s' % self.bmf_label, self.bmf_url)] else: self.friends += [('(Bianchi Modular Form %s)' % self.bmf_label, '')] if 'Lfunction' in self.urls: self.friends += [('L-function', self.urls['Lfunction'])] else: self.friends += [('L-function not available', "")] self.properties = [ ('Base field', self.field.field_pretty()), ('Label', self.label)] # Plot if K.signature()[0]: self.plot = encode_plot(EC_nf_plot(K,self.ainvs, self.field.generator_name())) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(self.plot) self.properties += [(None, self.plot_link)] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden (can be very large) # ('j-invariant', self.j), ('CM', self.cm_bool)] if self.base_change: self.properties += [('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change]))] else: self.base_change = [] # in case it was False instead of [] self.properties += [('base-change', 'no')] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code() self.downloads = [('Download all stored data', url_for(".download_ECNF_all", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number))] for lang in [["Magma","magma"], ["SageMath","sage"], ["GP", "gp"]]: self.downloads.append(('Download {} code'.format(lang[0]), url_for(".ecnf_code_download", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number, download_type=lang[1])))
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these, construct the # actual elliptic curve E, and compute some further (easy) # data about it. # # Weierstrass equation data = self.data = {} data['ainvs'] = [int(ai) for ai in self.ainvs] self.E = EllipticCurve(data['ainvs']) data['equation'] = web_latex(self.E) # conductor, j-invariant and discriminant data['conductor'] = N = ZZ(self.conductor) bad_primes = N.prime_factors() try: data['j_invariant'] = QQ(str(self.jinv)) except KeyError: data['j_invariant'] = self.E.j_invariant() data['j_inv_factor'] = latex(0) if data['j_invariant']: data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) data['disc'] = D = self.E.discriminant() data['disc_latex'] = web_latex(data['disc']) data['disc_factor'] = latex(data['disc'].factor()) data['cond_factor'] =latex(N.factor()) data['cond_latex'] = web_latex(N) # CM and endomorphism ring data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD']%4==0: d4 = ZZ(data['CMD'])//4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] # modular degree try: data['degree'] = self.degree except AttributeError: try: data['degree'] = self.E.modular_degree() except RuntimeError: data['degree'] # invalid, but will be displayed nicely # Minimal quadratic twist E_pari = self.E.pari_curve() from sage.libs.pari.all import PariError try: minq, minqD = self.E.minimal_quadratic_twist() except PariError: # this does occur with 164411a1 ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label) minq = self.E minqD = 1 data['minq_D'] = minqD if self.E == minq: data['minq_label'] = self.lmfdb_label data['minq_info'] = '(itself)' else: minq_ainvs = [str(c) for c in minq.ainvs()] data['minq_label'] = db_ec().find_one({'ainvs': minq_ainvs})['lmfdb_label'] data['minq_info'] = '(by %s)' % minqD minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) # rational and integral points mw = self.mw = {} xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords] xintpoints = [P.xy() for P in xintpoints_projective] mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints) # Generators of infinite order mw['rank'] = self.rank try: self.generators = [self.E(g) for g in parse_points(self.gens)] mw['generators'] = [web_latex(P.xy()) for P in self.generators] mw['heights'] = [P.height() for P in self.generators] except AttributeError: mw['generators'] = '' mw['heights'] = [] # Torsion subgroup: order, structure, generators mw['tor_order'] = self.torsion tor_struct = [int(c) for c in self.torsion_structure] if mw['tor_order'] == 1: mw['tor_struct'] = '\mathrm{Trivial}' mw['tor_gens'] = '' else: mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct]) mw['tor_gens'] = ', '.join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators)) # Images of Galois representations try: data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images] data['non_surjective_primes'] = self.non_surjective_primes except AttributeError: #print "No Galois image data" data['galois_images'] = [] data['non_surjective_primes'] = [] data['galois_data'] = [{'p': p,'image': im } for p,im in zip(data['non_surjective_primes'], data['galois_images'])] if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens]) data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & BSD data bsd = self.bsd = {} r = self.rank if r >= 2: bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r,r) elif r: bsd['lder_name'] = "L'(E,1)" else: bsd['lder_name'] = "L(E,1)" bsd['reg'] = self.regulator bsd['omega'] = self.real_period bsd['sha'] = int(0.1+self.sha_an) bsd['lder'] = self.special_value # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0 data['p_adic_primes'] = [p for p in sage.all.prime_range(5, 100) if self.E.is_ordinary(p) and not p.divides(N)] # Local data local_data = self.local_data = [] # if we use E.tamagawa_numbers() it calls E.local_data(p) which # used to crash on some curves e.g. 164411a1 tamagawa_numbers = [] for p in bad_primes: local_info = self.E.local_data(p, algorithm="generic") local_data_p = {} local_data_p['p'] = p local_data_p['tamagawa_number'] = local_info.tamagawa_number() tamagawa_numbers.append(ZZ(local_info.tamagawa_number())) local_data_p['kodaira_symbol'] = web_latex(local_info.kodaira_symbol()).replace('$', '') local_data_p['reduction_type'] = local_info.bad_reduction_type() local_data_p['ord_cond'] = local_info.conductor_valuation() local_data_p['ord_disc'] = local_info.discriminant_valuation() local_data_p['ord_den_j'] = max(0,-self.E.j_invariant().valuation(p)) local_data.append(local_data_p) if len(bad_primes)>1: bsd['tamagawa_factors'] = r' \cdot '.join(str(c.factor()) for c in tamagawa_numbers) else: bsd['tamagawa_factors'] = '' bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers) cond, iso, num = split_lmfdb_label(self.lmfdb_label) data['newform'] = web_latex(self.E.q_eigenform(10)) self.make_code_snippets() self.friends = [ ('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)), ('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso)), ('Symmetric 4th power L-function', url_for("l_functions.l_function_ec_sym_page", power='4', label=self.lmfdb_iso)), ('Modular form ' + self.lmfdb_iso.replace('.', '.2'), url_for("emf.render_elliptic_modular_forms", level=int(N), weight=2, character=0, label=iso))] self.downloads = [('Download coeffients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label))] self.plot = encode_plot(self.E.plot()) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % mw['rank']), ('Torsion Structure', '\(%s\)' % mw['tor_struct']) ] self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num,' ')]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these. # Old version: required constructing the actual elliptic curve # E, and computing some further data about it. # New version (May 2016): extra data fields now in the # database so we do not have to construct the curve or do any # computation with it on the fly. As a failsafe the old way # is still included. data = self.data = {} try: data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')] except AttributeError: data['ainvs'] = [int(ai) for ai in self.ainvs] data['conductor'] = N = ZZ(self.conductor) data['j_invariant'] = QQ(str(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) mw = self.mw = {} mw['rank'] = self.rank mw['int_points'] = '' if self.xintcoords: a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']] def lift_x(x): f = ((x + a2) * x + a4) * x + a6 b = (a1 * x + a3) d = (b * b + 4 * f).sqrt() return (x, (-b + d) / 2) mw['int_points'] = ', '.join( web_latex(lift_x(x)) for x in self.xintcoords) mw['generators'] = '' mw['heights'] = [] if self.gens: mw['generators'] = [ web_latex(tuple(P)) for P in parse_points(self.gens) ] mw['tor_order'] = self.torsion tor_struct = [int(c) for c in self.torsion_structure] if mw['tor_order'] == 1: mw['tor_struct'] = '\mathrm{Trivial}' mw['tor_gens'] = '' else: mw['tor_struct'] = ' \\times '.join( ['\Z/{%s}\Z' % n for n in tor_struct]) mw['tor_gens'] = ', '.join( web_latex(tuple(P)) for P in parse_points(self.torsion_generators)) # try to get all the data we need from the database entry (now in self) try: data['equation'] = self.equation local_data = self.local_data D = self.signD * prod( [ld['p']**ld['ord_disc'] for ld in local_data]) data['disc'] = D Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD)) data['minq_D'] = minqD = self.min_quad_twist['disc'] minq_label = self.min_quad_twist['label'] data['minq_label'] = db_ec().find_one( {'label': minq_label}, ['lmfdb_label'])['lmfdb_label'] data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD try: data['degree'] = self.degree except AttributeError: data['degree'] = 0 # invalid, but will be displayed nicely mw['heights'] = self.heights if self.number == 1: data['an'] = self.anlist data['ap'] = self.aplist else: r = db_ec().find_one({ 'lmfdb_iso': self.lmfdb_iso, 'number': 1 }, ['anlist', 'aplist']) data['an'] = r['anlist'] data['ap'] = r['aplist'] # otherwise fall back to computing it from the curve except AttributeError: self.E = EllipticCurve(data['ainvs']) data['equation'] = web_latex(self.E) data['disc'] = D = self.E.discriminant() Nfac = N.factor() Dfac = D.factor() bad_primes = [p for p, e in Nfac] try: data['degree'] = self.degree except AttributeError: try: data['degree'] = self.E.modular_degree() except RuntimeError: data['degree'] = 0 # invalid, but will be displayed nicely minq, minqD = self.E.minimal_quadratic_twist() data['minq_D'] = minqD if minqD == 1: data['minq_label'] = self.lmfdb_label data['minq_info'] = '(itself)' else: # This relies on the minimal twist being in the # database, which is true when the database only # contains the Cremona database. It would be a good # idea if, when the database is extended, we ensured # that for any curve included, all twists of smaller # conductor are also included. minq_ainvs = [str(c) for c in minq.ainvs()] data['minq_label'] = db_ec().find_one( { 'jinv': str(self.E.j_invariant()), 'ainvs': minq_ainvs }, ['lmfdb_label'])['lmfdb_label'] data['minq_info'] = '(by %s)' % minqD if self.gens: self.generators = [self.E(g) for g in parse_points(self.gens)] mw['heights'] = [P.height() for P in self.generators] data['an'] = self.E.anlist(20, python_ints=True) data['ap'] = self.E.aplist(100, python_ints=True) self.local_data = local_data = [] for p in bad_primes: ld = self.E.local_data(p, algorithm="generic") local_data_p = {} local_data_p['p'] = p local_data_p['cp'] = ld.tamagawa_number() local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace( '$', '') local_data_p['red'] = ld.bad_reduction_type() rootno = -ld.bad_reduction_type() if rootno == 0: rootno = self.E.root_number(p) local_data_p['rootno'] = rootno local_data_p['ord_cond'] = ld.conductor_valuation() local_data_p['ord_disc'] = ld.discriminant_valuation() local_data_p['ord_den_j'] = max( 0, -self.E.j_invariant().valuation(p)) local_data.append(local_data_p) # If we got the data from the database, the root numbers may # not have been stored there, so we have to compute them. If # there are additive primes this means constructing the curve. for ld in self.local_data: if not 'rootno' in ld: rootno = -ld['red'] if rootno == 0: try: E = self.E except AttributeError: self.E = E = EllipticCurve(data['ainvs']) rootno = E.root_number(ld['p']) ld['rootno'] = rootno minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) data['disc_factor'] = latex(Dfac) data['cond_factor'] = latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) data['galois_images'] = [ trim_galois_image_code(s) for s in self.mod_p_images ] data['non_maximal_primes'] = self.non_maximal_primes data['galois_data'] = [{ 'p': p, 'image': im } for p, im in zip(data['non_maximal_primes'], data['galois_images'])] data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['cm_ramp'] = [ p for p in ZZ(self.cm).support() if not p in self.non_surjective_primes ] data['cm_nramp'] = len(data['cm_ramp']) if data['cm_nramp'] == 1: data['cm_ramp'] = data['cm_ramp'][0] else: data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']]) data['cm_sqf'] = ZZ(self.cm).squarefree_part() data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD'] % 4 == 0: d4 = ZZ(data['CMD']) // 4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = st_link_by_name(1, 2, 'N(U(1))') else: data['ST'] = st_link_by_name(1, 2, 'SU(2)') data['p_adic_primes'] = [ p for i, p in enumerate(prime_range(5, 100)) if (N * data['ap'][i]) % p != 0 ] cond, iso, num = split_lmfdb_label(self.lmfdb_label) self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.one_deg = ZZ(self.class_deg).is_prime() self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso}) isodegs = [str(d) for d in self.isogeny_degrees if d > 1] if len(isodegs) < 3: data['isogeny_degrees'] = " and ".join(isodegs) else: data['isogeny_degrees'] = " and ".join( [", ".join(isodegs[:-1]), isodegs[-1]]) if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join( [latex(Matrix(2, 2, M)) for M in self.twoadic_gens]) data[ 'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & BSD data bsd = self.bsd = {} r = self.rank if r >= 2: bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r) elif r: bsd['lder_name'] = "L'(E,1)" else: bsd['lder_name'] = "L(E,1)" bsd['reg'] = self.regulator bsd['omega'] = self.real_period bsd['sha'] = int(0.1 + self.sha_an) bsd['lder'] = self.special_value # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = (padic_db().find({ 'lmfdb_iso': self.lmfdb_iso }).count()) > 0 data['iwdata'] = [] try: pp = [int(p) for p in self.iwdata] badp = [l['p'] for l in self.local_data] rtypes = [l['red'] for l in self.local_data] data[ 'iw_missing_flag'] = False # flags that there is at least one "?" in the table data[ 'additive_shown'] = False # flags that there is at least one additive prime in table for p in sorted(pp): rtype = "" if p in badp: red = rtypes[badp.index(p)] # Additive primes are excluded from the table # if red==0: # continue #rtype = ["nsmult","add", "smult"][1+red] rtype = ["nonsplit", "add", "split"][1 + red] p = str(p) pdata = self.iwdata[p] if isinstance(pdata, type(u'?')): if not rtype: rtype = "ordinary" if pdata == "o?" else "ss" if rtype == "add": data['iwdata'] += [[p, rtype, "-", "-"]] data['additive_shown'] = True else: data['iwdata'] += [[p, rtype, "?", "?"]] data['iw_missing_flag'] = True else: if len(pdata) == 2: if not rtype: rtype = "ordinary" lambdas = str(pdata[0]) mus = str(pdata[1]) else: rtype = "ss" lambdas = ",".join([str(pdata[0]), str(pdata[1])]) mus = str(pdata[2]) mus = ",".join([mus, mus]) data['iwdata'] += [[p, rtype, lambdas, mus]] except AttributeError: # For curves with no Iwasawa data pass tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data] cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [ latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')' for cp in cp_fac ] bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac) bsd['tamagawa_product'] = prod(tamagawa_numbers) # Torsion growth data data['torsion_growth_data_exists'] = False try: tg = self.tor_gro data['torsion_growth_data_exists'] = True data['tgx'] = tgextra = [] # find all base-changes of this curve in the database, if any bcs = [ res['label'] for res in getDBConnection().elliptic_curves.nfcurves.find( {'base_change': self.lmfdb_label}, projection={ 'label': True, '_id': False }) ] bcfs = [lab.split("-")[0] for lab in bcs] for F, T in tg.items(): tg1 = {} tg1['bc'] = "Not in database" if ":" in F: F = F.replace(":", ".") field_data = nf_display_knowl(F, getDBConnection(), field_pretty(F)) deg = int(F.split(".")[0]) bcc = [x for x, y in zip(bcs, bcfs) if y == F] if bcc: from lmfdb.ecnf.main import split_full_label F, NN, I, C = split_full_label(bcc[0]) tg1['bc'] = bcc[0] tg1['bc_url'] = url_for('ecnf.show_ecnf', nf=F, conductor_label=NN, class_label=I, number=C) else: field_data = web_latex_split_on_pm( coeff_to_poly(string2list(F))) deg = F.count(",") tg1['d'] = deg tg1['f'] = field_data tg1['t'] = '\(' + ' \\times '.join( ['\Z/{}\Z'.format(n) for n in T.split(",")]) + '\)' tg1['m'] = 0 tgextra.append(tg1) tgextra.sort(key=lambda x: x['d']) data['ntgx'] = len(tgextra) lastd = 1 for tg in tgextra: d = tg['d'] if d != lastd: tg['m'] = len([x for x in tgextra if x['d'] == d]) lastd = d data['tg_maxd'] = max(db_ecstats().find_one( {'_id': 'torsion_growth'})['degrees']) except AttributeError: pass # we have no torsion growth data data['newform'] = web_latex( PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform_label'] = self.newform_label = newform_label( cond, 2, 1, iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self._code = None self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", conductor_label=N, isogeny_class_label=iso))] if not self.cm: if N <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor=N, isogeny=iso))] if N <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor=N, isogeny=iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)), ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Download Sage code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % mw['rank']), ('Torsion Structure', '\(%s\)' % mw['tor_struct'])] self.title = "Elliptic Curve %s (Cremona label %s)" % ( self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num, ' ')]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these, construct the # actual elliptic curve E, and compute some further (easy) # data about it. # # Weierstrass equation data = self.data = {} data['ainvs'] = [int(ai) for ai in self.ainvs] self.E = EllipticCurve(data['ainvs']) data['equation'] = web_latex(self.E) # conductor, j-invariant and discriminant data['conductor'] = N = ZZ(self.conductor) bad_primes = N.prime_factors() try: data['j_invariant'] = QQ(str(self.jinv)) except KeyError: data['j_invariant'] = self.E.j_invariant() data['j_inv_factor'] = latex(0) if data['j_invariant']: data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) data['disc'] = D = self.E.discriminant() data['disc_latex'] = web_latex(data['disc']) data['disc_factor'] = latex(data['disc'].factor()) data['cond_factor'] = latex(N.factor()) data['cond_latex'] = web_latex(N) # CM and endomorphism ring data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD'] % 4 == 0: d4 = ZZ(data['CMD']) // 4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] # modular degree try: data['degree'] = self.degree except AttributeError: try: data['degree'] = self.E.modular_degree() except RuntimeError: data['degree'] # invalid, but will be displayed nicely # Minimal quadratic twist E_pari = self.E.pari_curve() from sage.libs.pari.all import PariError try: minq, minqD = self.E.minimal_quadratic_twist() except PariError: # this does occur with 164411a1 ec.debug( "PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label) minq = self.E minqD = 1 data['minq_D'] = minqD if self.E == minq: data['minq_label'] = self.lmfdb_label data['minq_info'] = '(itself)' else: minq_ainvs = [str(c) for c in minq.ainvs()] data['minq_label'] = db_ec().find_one({'ainvs': minq_ainvs})['lmfdb_label'] data['minq_info'] = '(by %s)' % minqD minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) # rational and integral points mw = self.mw = {} xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords] xintpoints = [P.xy() for P in xintpoints_projective] mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints) # Generators of infinite order mw['rank'] = self.rank try: self.generators = [self.E(g) for g in parse_points(self.gens)] mw['generators'] = [web_latex(P.xy()) for P in self.generators] mw['heights'] = [P.height() for P in self.generators] except AttributeError: mw['generators'] = '' mw['heights'] = [] # Torsion subgroup: order, structure, generators mw['tor_order'] = self.torsion tor_struct = [int(c) for c in self.torsion_structure] if mw['tor_order'] == 1: mw['tor_struct'] = '\mathrm{Trivial}' mw['tor_gens'] = '' else: mw['tor_struct'] = ' \\times '.join( ['\Z/{%s}\Z' % n for n in tor_struct]) mw['tor_gens'] = ', '.join( web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators)) # Images of Galois representations try: data['galois_images'] = [ trim_galois_image_code(s) for s in self.galois_images ] data['non_surjective_primes'] = self.non_surjective_primes except AttributeError: #print "No Galois image data" data['galois_images'] = [] data['non_surjective_primes'] = [] data['galois_data'] = [{ 'p': p, 'image': im } for p, im in zip(data['non_surjective_primes'], data['galois_images'])] if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join( [latex(Matrix(2, 2, M)) for M in self.twoadic_gens]) data[ 'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & BSD data bsd = self.bsd = {} r = self.rank if r >= 2: bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r) elif r: bsd['lder_name'] = "L'(E,1)" else: bsd['lder_name'] = "L(E,1)" bsd['reg'] = self.regulator bsd['omega'] = self.real_period bsd['sha'] = int(0.1 + self.sha_an) bsd['lder'] = self.special_value # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = (padic_db().find({ 'lmfdb_iso': self.lmfdb_iso }).count()) > 0 data['p_adic_primes'] = [ p for p in sage.all.prime_range(5, 100) if self.E.is_ordinary(p) and not p.divides(N) ] # Local data local_data = self.local_data = [] # if we use E.tamagawa_numbers() it calls E.local_data(p) which # used to crash on some curves e.g. 164411a1 tamagawa_numbers = [] for p in bad_primes: local_info = self.E.local_data(p, algorithm="generic") local_data_p = {} local_data_p['p'] = p local_data_p['tamagawa_number'] = local_info.tamagawa_number() tamagawa_numbers.append(ZZ(local_info.tamagawa_number())) local_data_p['kodaira_symbol'] = web_latex( local_info.kodaira_symbol()).replace('$', '') local_data_p['reduction_type'] = local_info.bad_reduction_type() local_data_p['ord_cond'] = local_info.conductor_valuation() local_data_p['ord_disc'] = local_info.discriminant_valuation() local_data_p['ord_den_j'] = max(0, -self.E.j_invariant().valuation(p)) local_data.append(local_data_p) cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [ latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')' for cp in cp_fac ] bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac) bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers) cond, iso, num = split_lmfdb_label(self.lmfdb_label) data['newform'] = web_latex(self.E.q_eigenform(10)) self.make_code_snippets() self.friends = [('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)), ('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso)), ('Symmetric 4th power L-function', url_for("l_functions.l_function_ec_sym_page", power='4', label=self.lmfdb_iso)), ('Modular form ' + self.lmfdb_iso.replace('.', '.2'), url_for("emf.render_elliptic_modular_forms", level=int(N), weight=2, character=1, label=iso))] self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label))] self.plot = encode_plot(self.E.plot()) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % mw['rank']), ('Torsion Structure', '\(%s\)' % mw['tor_struct'])] self.title = "Elliptic Curve %s (Cremona label %s)" % ( self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num, ' ')]
def make_class(self): # Create a list of the curves in the class from the database self.db_curves = [c for c in db_ec().find( {'field_label': self.field_label, 'conductor_label': self.conductor_label, 'iso_label': self.iso_label}).sort('number')] # Rank or bounds try: self.rk = web_latex(self.db_curves[0]['rank']) except KeyError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.db_curves[0]['rank_bounds']) except KeyError: self.rank_bounds = [0, sage.rings.infinity.Infinity] self.rk_bnds = "not recorded" # Extract the isogeny degree matrix from the database if possible, else create it if hasattr(self, 'isogeny_matrix'): from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) else: self.isogeny_matrix = make_iso_matrix(self.db_curves) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) self.field = field_pretty(self.field_label) self.field_knowl = nf_display_knowl(self.field_label, lmfdb.base.getDBConnection(), self.field) def curve_url(c): return url_for(".show_ecnf", nf=c['field_label'], conductor_label=c['conductor_label'], class_label=c['iso_label'], number=c['number']) self.curves = [[c['short_label'], curve_url(c), web_ainvs(self.field_label,c['ainvs'])] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.field_label) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0,1] if totally_real: self.hmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field_label, label=self.hmf_label) self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.friends = [] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] self.friends += [('L-function', self.urls['Lfunction'])] if imag_quadratic: self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')] self.properties = [('Base field', self.field), ('Label', self.class_label), (None, self.graph_link), ('Conductor', '%s' % self.conductor_label) ] if self.rk != '?': self.properties += [('Rank', '%s' % self.rk)] else: if self.rk_bnds == 'not recorded': self.properties += [('Rank', '%s' % self.rk_bnds)] else: self.properties += [('Rank bounds', '%s' % self.rk_bnds)] self.bread = [('Elliptic Curves ', url_for(".index")), (self.field_label, self.urls['field']), (self.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.short_label, self.urls['class'])]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these. # Old version: required constructing the actual elliptic curve # E, and computing some further data about it. # New version (May 2016): extra data fields now in the # database so we do not have to construct the curve or do any # computation with it on the fly. As a failsafe the old way # is still included. data = self.data = {} try: data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')] except AttributeError: data['ainvs'] = [int(ai) for ai in self.ainvs] data['conductor'] = N = ZZ(self.conductor) data['j_invariant'] = QQ(str(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) mw = self.mw = {} mw['rank'] = self.rank mw['int_points'] = '' if self.xintcoords: a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']] def lift_x(x): f = ((x + a2) * x + a4) * x + a6 b = (a1*x + a3) d = (b*b + 4*f).sqrt() return (x, (-b+d)/2) mw['int_points'] = ', '.join(web_latex(lift_x(x)) for x in self.xintcoords) mw['generators'] = '' mw['heights'] = [] if self.gens: mw['generators'] = [web_latex(tuple(P)) for P in parse_points(self.gens)] mw['tor_order'] = self.torsion tor_struct = [int(c) for c in self.torsion_structure] if mw['tor_order'] == 1: mw['tor_struct'] = '\mathrm{Trivial}' mw['tor_gens'] = '' else: mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct]) mw['tor_gens'] = ', '.join(web_latex(tuple(P)) for P in parse_points(self.torsion_generators)) # try to get all the data we need from the database entry (now in self) try: data['equation'] = self.equation local_data = self.local_data badprimes = [ZZ(ld['p']) for ld in local_data] D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data]) data['disc'] = D Nfac = Factorization([(ZZ(ld['p']),ld['ord_cond']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['p']),ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD)) data['minq_D'] = minqD = self.min_quad_twist['disc'] minq_label = self.min_quad_twist['label'] data['minq_label'] = db_ec().find_one({'label':minq_label}, ['lmfdb_label'])['lmfdb_label'] data['minq_info'] = '(itself)' if minqD==1 else '(by %s)' % minqD try: data['degree'] = self.degree except AttributeError: data['degree'] =0 # invalid, but will be displayed nicely mw['heights'] = self.heights if self.number == 1: data['an'] = self.anlist data['ap'] = self.aplist else: r = db_ec().find_one({'lmfdb_iso':self.lmfdb_iso, 'number':1}, ['anlist','aplist']) data['an'] = r['anlist'] data['ap'] = r['aplist'] # otherwise fall back to computing it from the curve except AttributeError: print("Falling back to constructing E") self.E = EllipticCurve(data['ainvs']) data['equation'] = web_latex(self.E) data['disc'] = D = self.E.discriminant() Nfac = N.factor() Dfac = D.factor() bad_primes = [p for p,e in Nfac] try: data['degree'] = self.degree except AttributeError: try: data['degree'] = self.E.modular_degree() except RuntimeError: data['degree'] = 0 # invalid, but will be displayed nicely minq, minqD = self.E.minimal_quadratic_twist() data['minq_D'] = minqD if minqD == 1: data['minq_label'] = self.lmfdb_label data['minq_info'] = '(itself)' else: # This relies on the minimal twist being in the # database, which is true when the database only # contains the Cremona database. It would be a good # idea if, when the database is extended, we ensured # that for any curve included, all twists of smaller # conductor are also included. minq_ainvs = [str(c) for c in minq.ainvs()] data['minq_label'] = db_ec().find_one({'jinv':str(self.E.j_invariant()), 'ainvs': minq_ainvs},['lmfdb_label'])['lmfdb_label'] data['minq_info'] = '(by %s)' % minqD if self.gens: self.generators = [self.E(g) for g in parse_points(self.gens)] mw['heights'] = [P.height() for P in self.generators] data['an'] = self.E.anlist(20,python_ints=True) data['ap'] = self.E.aplist(100,python_ints=True) self.local_data = local_data = [] for p in bad_primes: ld = self.E.local_data(p, algorithm="generic") local_data_p = {} local_data_p['p'] = p local_data_p['cp'] = ld.tamagawa_number() local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace('$', '') local_data_p['red'] = ld.bad_reduction_type() local_data_p['ord_cond'] = ld.conductor_valuation() local_data_p['ord_disc'] = ld.discriminant_valuation() local_data_p['ord_den_j'] = max(0,-self.E.j_invariant().valuation(p)) local_data.append(local_data_p) jfac = Factorization([(ZZ(ld['p']),ld['ord_den_j']) for ld in local_data]) minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) data['disc_factor'] = latex(Dfac) data['cond_factor'] =latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD']%4==0: d4 = ZZ(data['CMD'])//4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.N(U(1))'),'N(\\mathrm{U}(1))') else: data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.SU(2)'),'\\mathrm{SU}(2)') data['p_adic_primes'] = [p for i,p in enumerate(sage.all.prime_range(5, 100)) if (N*data['ap'][i]) %p !=0] try: data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images] data['non_surjective_primes'] = self.non_surjective_primes except AttributeError: #print "No Galois image data" data['galois_images'] = [] data['non_surjective_primes'] = [] data['galois_data'] = [{'p': p,'image': im } for p,im in zip(data['non_surjective_primes'], data['galois_images'])] if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens]) data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & BSD data bsd = self.bsd = {} r = self.rank if r >= 2: bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r,r) elif r: bsd['lder_name'] = "L'(E,1)" else: bsd['lder_name'] = "L(E,1)" bsd['reg'] = self.regulator bsd['omega'] = self.real_period bsd['sha'] = int(0.1+self.sha_an) bsd['lder'] = self.special_value # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0 tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data] cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [latex(cp) if len(cp)<2 else '('+latex(cp)+')' for cp in cp_fac] bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac) bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers) cond, iso, num = split_lmfdb_label(self.lmfdb_label) data['newform'] = web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform_label'] = self.newform_label = newform_label(cond,2,1,iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self._code = None self.friends = [ ('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label))] if not self.cm: if N<=300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))] if N<=50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)), ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Download Sage code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp')) ] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % mw['rank']), ('Torsion Structure', '\(%s\)' % mw['tor_struct']) ] self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num,' ')]
def make_class(self): self.ainvs_str = self.ainvs self.ainvs = [int(a) for a in self.ainvs_str] self.E = EllipticCurve(self.ainvs) self.CM = self.E.has_cm() try: # Extract the isogeny degree matrix from the database size = len(self.isogeny_matrix) from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) except AttributeError: # Failsafe: construct it from scratch self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix() size = self.isogeny_matrix.nrows() self.ncurves = size # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img # Create a list of the curves in the class from the database self.db_curves = [self.E] self.optimal_flags = [False] * size self.degrees = [0] * size if self.degree: self.degrees[0] = self.degree else: try: self.degrees[0] = self.E.modular_degree() except RuntimeError: pass # Fill in the curves in the class by looking each one up in the db: self.cremona_labels = [self.label] + [0] * (size - 1) if self.number == 1: self.optimal_flags[0] = True for i in range(2, size + 1): Edata = db_ec().find_one({"lmfdb_label": self.lmfdb_iso + str(i)}) Ei = EllipticCurve([int(a) for a in Edata["ainvs"]]) self.cremona_labels[i - 1] = Edata["label"] if Edata["number"] == 1: self.optimal_flags[i - 1] = True if "degree" in Edata: self.degrees[i - 1] = Edata["degree"] else: try: self.degrees[i - 1] = Ei.modular_degree() except RuntimeError: pass self.db_curves.append(Ei) if self.iso == "990h": # this isogeny class is labeled wrong in Cremona's tables self.optimal_flags = [False, False, True, False] self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) N, iso, number = split_lmfdb_label(self.lmfdb_iso) self.newform = web_latex(self.E.q_eigenform(10)) self.newform_label = newform_label(N, 2, 1, iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso) newform_exists_in_db = is_newform_in_db(self.newform_label) self.lfunction_link = url_for("l_functions.l_function_ec_page", label=self.lmfdb_iso) self.curves = [ dict( [ ("label", self.lmfdb_iso + str(i + 1)), ("url", url_for(".by_triple_label", conductor=N, iso_label=iso, number=i + 1)), ("cremona_label", self.cremona_labels[i]), ("ainvs", str(list(c.ainvs()))), ("torsion", c.torsion_order()), ("degree", self.degrees[i]), ("optimal", self.optimal_flags[i]), ] ) for i, c in enumerate(self.db_curves) ] self.friends = [("L-function", self.lfunction_link)] if not self.CM: self.friends += [ ( "Symmetric square L-function", url_for("l_functions.l_function_ec_sym_page", power="2", label=self.lmfdb_iso), ), ( "Symmetric 4th power L-function", url_for("l_functions.l_function_ec_sym_page", power="4", label=self.lmfdb_iso), ), ] if newform_exists_in_db: self.friends += [("Modular form " + self.newform_label, self.newform_link)] self.properties = [ ("Label", self.lmfdb_iso), ("Number of curves", str(self.ncurves)), ("Conductor", "\(%s\)" % N), ("CM", "%s" % self.CM), ("Rank", "\(%s\)" % self.rank), ("Graph", ""), (None, self.graph_link), ] self.downloads = [ ("Download coefficients of newform", url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=100)), ("Download stored data for all curves", url_for(".download_EC_all", label=self.lmfdb_iso)), ] if self.lmfdb_iso == self.iso: self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso else: self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso) self.bread = [ ("Elliptic Curves", url_for("ecnf.index")), ("$\Q$", url_for(".rational_elliptic_curves")), ("%s" % N, url_for(".by_conductor", conductor=N)), ("%s" % iso, " "), ]
def make_class(self): # Create a list of the curves in the class from the database self.db_curves = [ c for c in db_ecnf().find({ 'field_label': self.field_label, 'conductor_norm': self.conductor_norm, 'conductor_label': self.conductor_label, 'iso_nlabel': self.iso_nlabel }).sort('number') ] # Rank or bounds try: self.rk = web_latex(self.db_curves[0]['rank']) except KeyError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.db_curves[0]['rank_bounds']) except KeyError: self.rank_bounds = [0, sage.rings.infinity.Infinity] self.rk_bnds = "not recorded" # Extract the isogeny degree matrix from the database if possible, else create it if hasattr(self, 'isogeny_matrix'): from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) else: self.isogeny_matrix = make_iso_matrix(self.db_curves) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) self.field = field_pretty(self.field_label) self.field_knowl = nf_display_knowl(self.field_label, lmfdb.base.getDBConnection(), self.field) def curve_url(c): return url_for(".show_ecnf", nf=c['field_label'], conductor_label=c['conductor_label'], class_label=c['iso_label'], number=c['number']) self.curves = [[ c['short_label'], curve_url(c), web_ainvs(self.field_label, c['ainvs']) ] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.field_label) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join( [self.field_label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field_label, label=self.hmf_label) self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join( [self.field_label, self.conductor_label, self.iso_label]) self.friends = [] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] self.friends += [('L-function', self.urls['Lfunction'])] if imag_quadratic: self.friends += [ ('Bianchi Modular Form %s not available' % self.bmf_label, '') ] self.properties = [('Base field', self.field), ('Label', self.class_label), (None, self.graph_link), ('Conductor', '%s' % self.conductor_label)] if self.rk != '?': self.properties += [('Rank', '%s' % self.rk)] else: if self.rk_bnds == 'not recorded': self.properties += [('Rank', '%s' % self.rk_bnds)] else: self.properties += [('Rank bounds', '%s' % self.rk_bnds)] self.bread = [('Elliptic Curves ', url_for(".index")), (self.field_label, self.urls['field']), (self.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.short_label, self.urls['class'])]
def make_E(self): coeffs = self.ainvs # list of 5 lists of d strings self.ainvs = [self.field.parse_NFelt(x) for x in coeffs] self.latex_ainvs = web_latex(self.ainvs) from sage.schemes.elliptic_curves.all import EllipticCurve self.E = E = EllipticCurve(self.ainvs) self.equn = web_latex(E) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = E.conductor() self.cond = web_latex(N) self.cond_norm = web_latex(N.norm()) if N.norm() == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond else: self.fact_cond = web_latex_ideal_fact(N.factor()) self.fact_cond_norm = web_latex(N.norm().factor()) D = self.field.K().ideal(E.discriminant()) self.disc = web_latex(D) self.disc_norm = web_latex(D.norm()) if D.norm() == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc else: self.fact_disc = web_latex_ideal_fact(D.factor()) self.fact_disc_norm = web_latex(D.norm().factor()) # Minimal model? # # All curves in the database should be given # by models which are globally minimal if possible, else # minimal at all but one prime. But we do not rely on this # here, and the display should be correct if either (1) there # exists a global minimal model but this model is not; or (2) # this model is non-minimal at more than one prime. # self.non_min_primes = non_minimal_primes(E) self.is_minimal = len(self.non_min_primes) == 0 self.has_minimal_model = True if not self.is_minimal: self.non_min_prime = ",".join([web_latex(P) for P in self.non_min_primes]) self.has_minimal_model = has_global_minimal_model(E) if not self.is_minimal: Dmin = minimal_discriminant_ideal(E) self.mindisc = web_latex(Dmin) self.mindisc_norm = web_latex(Dmin.norm()) if Dmin.norm() == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc else: self.fact_mindisc = web_latex_ideal_fact(Dmin.factor()) self.fact_mindisc_norm = web_latex(Dmin.norm().factor()) j = E.j_invariant() if j: d = j.denominator() n = d * j # numerator exists for quadratic fields only! g = GCD(list(n)) n1 = n / g self.j = web_latex(n1) if d != 1: if n1 > 1: # self.j = "("+self.j+")\(/\)"+web_latex(d) self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) else: self.j = web_latex(d) if g > 1: if n1 > 1: self.j = web_latex(g) + self.j else: self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None if j.is_zero(): self.fact_j = web_latex(j) else: try: self.fact_j = web_latex(j.factor()) except (ArithmeticError, ValueError): # if not all prime ideal factors principal pass # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(self.torsion_structure) torsion_gens = [E([self.field.parse_NFelt(x) for x in P]) for P in self.torsion_gens] self.torsion_gens = ",".join([web_latex(P) for P in torsion_gens]) # Rank or bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.rank_bounds) except AttributeError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not recorded" # Generators try: gens = [E([self.field.parse_NFelt(x) for x in P]) for P in self.gens] self.gens = ", ".join([web_latex(P) for P in gens]) if self.rk == "?": self.reg = "unknown" else: if gens: self.reg = E.regulator_of_points(gens) else: self.reg = 1 # otherwise we only get 1.00000... except AttributeError: self.gens = "not recorded" self.reg = "unknown" try: if self.rank == 0: self.reg = 1 except AttributeError: pass # Local data self.local_data = [] for p in N.prime_factors(): self.local_info = E.local_data(p, algorithm="generic") self.local_data.append( { "p": web_latex(p), "norm": web_latex(p.norm().factor()), "tamagawa_number": self.local_info.tamagawa_number(), "kodaira_symbol": web_latex(self.local_info.kodaira_symbol()).replace("$", ""), "reduction_type": self.local_info.bad_reduction_type(), "ord_den_j": max(0, -E.j_invariant().valuation(p)), "ord_mindisc": self.local_info.discriminant_valuation(), "ord_cond": self.local_info.conductor_valuation(), } ) # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls["curve"] = url_for( ".show_ecnf", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number, ) except RuntimeError: return self.urls["class"] = url_for( ".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, ) self.urls["conductor"] = url_for( ".show_ecnf_conductor", nf=self.field_label, conductor_label=quote(self.conductor_label) ) self.urls["field"] = url_for(".show_ecnf1", nf=self.field_label) sig = self.signature real_quadratic = sig == [2, 0] totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.urls["hmf"] = url_for("hmf.render_hmf_webpage", field_label=self.field.label, label=self.hmf_label) self.urls["Lfunction"] = url_for( "l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character="0", number="0", ) if imag_quadratic: self.bmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.friends = [] self.friends += [("Isogeny class " + self.short_class_label, self.urls["class"])] self.friends += [("Twists", url_for("ecnf.index", field_label=self.field_label, jinv=self.jinv))] if totally_real: self.friends += [("Hilbert Modular Form " + self.hmf_label, self.urls["hmf"])] self.friends += [("L-function", self.urls["Lfunction"])] if imag_quadratic: self.friends += [("Bianchi Modular Form %s not yet available" % self.bmf_label, "")] self.properties = [("Base field", self.field.field_pretty()), ("Label", self.label)] # Plot if E.base_field().signature()[0]: self.plot = encode_plot(EC_nf_plot(E, self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [ ("Conductor", self.cond), ("Conductor norm", self.cond_norm), # See issue #796 for why this is hidden # ('j-invariant', self.j), ("CM", self.cm_bool), ] if self.base_change: self.properties += [("base-change", "yes: %s" % ",".join([str(lab) for lab in self.base_change]))] else: self.base_change = [] # in case it was False instead of [] self.properties += [("Q-curve", self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [("Torsion order", self.ntors), ("Rank", r)] for E0 in self.base_change: self.friends += [("Base-change of %s /\(\Q\)" % E0, url_for("ec.by_ec_label", label=E0))] self.make_code_snippets()
def make_E(self): coeffs = self.ainvs # list of 5 lists of d strings self.ainvs = [self.field.parse_NFelt(x) for x in coeffs] self.latex_ainvs = web_latex(self.ainvs) from sage.schemes.elliptic_curves.all import EllipticCurve self.E = E = EllipticCurve(self.ainvs) self.equn = web_latex(E) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = E.conductor() self.cond = web_latex(N) self.cond_norm = web_latex(N.norm()) if N.norm() == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond else: self.fact_cond = web_latex_ideal_fact(N.factor()) self.fact_cond_norm = web_latex(N.norm().factor()) D = self.field.K().ideal(E.discriminant()) self.disc = web_latex(D) self.disc_norm = web_latex(D.norm()) if D.norm() == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc else: self.fact_disc = web_latex_ideal_fact(D.factor()) self.fact_disc_norm = web_latex(D.norm().factor()) # Minimal model? # # All curves in the database should be given # by models which are globally minimal if possible, else # minimal at all but one prime. But we do not rely on this # here, and the display should be correct if either (1) there # exists a global minimal model but this model is not; or (2) # this model is non-minimal at more than one prime. # self.non_min_primes = non_minimal_primes(E) self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = True if not self.is_minimal: self.non_min_prime = ','.join( [web_latex(P) for P in self.non_min_primes]) self.has_minimal_model = has_global_minimal_model(E) if not self.is_minimal: Dmin = minimal_discriminant_ideal(E) self.mindisc = web_latex(Dmin) self.mindisc_norm = web_latex(Dmin.norm()) if Dmin.norm( ) == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc else: self.fact_mindisc = web_latex_ideal_fact(Dmin.factor()) self.fact_mindisc_norm = web_latex(Dmin.norm().factor()) j = E.j_invariant() if j: d = j.denominator() n = d * j # numerator exists for quadratic fields only! g = GCD(list(n)) n1 = n / g self.j = web_latex(n1) if d != 1: if n1 > 1: #self.j = "("+self.j+")\(/\)"+web_latex(d) self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) else: self.j = web_latex(d) if g > 1: if n1 > 1: self.j = web_latex(g) + self.j else: self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None if j.is_zero(): self.fact_j = web_latex(j) else: try: self.fact_j = web_latex(j.factor()) except (ArithmeticError, ValueError): # if not all prime ideal factors principal pass # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple( self.torsion_structure) torsion_gens = [ E([self.field.parse_NFelt(x) for x in P]) for P in self.torsion_gens ] self.torsion_gens = ",".join([web_latex(P) for P in torsion_gens]) # Rank etc try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "not recorded" # if rank in self: # self.r = web_latex(self.rank) # Local data self.local_data = [] for p in N.prime_factors(): self.local_info = E.local_data(p, algorithm="generic") self.local_data.append({ 'p': web_latex(p), 'norm': web_latex(p.norm().factor()), 'tamagawa_number': self.local_info.tamagawa_number(), 'kodaira_symbol': web_latex(self.local_info.kodaira_symbol()).replace('$', ''), 'reduction_type': self.local_info.bad_reduction_type(), 'ord_den_j': max(0, E.j_invariant().valuation(p)), 'ord_mindisc': self.local_info.discriminant_valuation() }) # URLs of self and related objects: self.urls = {} self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label, number=self.number) self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) if self.field.is_real_quadratic(): self.hmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) if self.field.is_imag_quadratic(): self.bmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] if self.field.is_real_quadratic(): self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] if self.field.is_imag_quadratic(): self.friends += [ ('Bianchi Modular Form %s not yet available' % self.bmf_label, '') ] self.properties = [('Base field', self.field.field_pretty()), ('Label', self.label)] # Plot n1 = len(E.base_field().embeddings(RR)) if (n1): self.plot = encode_plot(EC_nf_plot(E, self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [('Conductor', self.cond), ('Conductor norm', self.cond_norm), ('j-invariant', self.j), ('CM', self.cm_bool)] if self.base_change: self.properties += [ ('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change])) ] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Q-curve', self.qc)] self.properties += [ ('Torsion order', self.ntors), ('Rank', self.rk), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))]
def make_class(self): self.ECNF = ECNF.by_label(self.label) # Create a list of the curves in the class from the database self.db_curves = [ ECNF(c) for c in db_ec().find({ 'field_label': self.field_label, 'conductor_label': self.conductor_label, 'iso_label': self.iso_label }).sort('number') ] size = len(self.db_curves) # Extract the isogeny degree matrix from the database if possible, else create it if hasattr(self, 'isogeny_matrix'): from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) else: self.isogeny_matrix = make_iso_matrix(self.db_curves) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) self.curves = [[c.short_label, c.urls['curve'], c.latex_ainvs] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.ECNF.field_label) self.field = self.ECNF.field if self.field.is_real_quadratic(): self.hmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) if self.field.is_imag_quadratic(): self.bmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.friends = [] if self.field.is_real_quadratic(): self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] if self.field.is_imag_quadratic(): self.friends += [ ('Bianchi Modular Form %s not yet available' % self.bmf_label, '') ] self.properties = [('Label', self.ECNF.label), (None, self.graph_link), ('Conductor', '%s' % self.ECNF.cond)] self.bread = [('Elliptic Curves ', url_for(".index")), (self.ECNF.field_label, self.urls['field']), (self.ECNF.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.ECNF.short_label, self.urls['class'])]
def make_E(self): #print("Creating ECNF object for {}".format(self.label)) #sys.stdout.flush() K = self.field.K() Kgen = str(K.gen()) # a-invariants # NB Here we construct the ai as elements of K, which are used as follows: # (1) to compute the model discriminant (if not stored) # (2) to compute the latex equation (if not stored) # (3) to compute the plots under real embeddings of K # Of these, (2) is not needed and (1) will soon be obsolete; # for (3) it would be possible to rewrite the function EC_nf_plot() not to need this. # Then we might also be able to avoid constructing the field K also. self.ainvs = parse_ainvs(K, self.ainvs) self.numb = str(self.number) # Conductor, discriminant, j-invariant self.cond_norm = web_latex(self.conductor_norm) Dnorm = self.normdisc self.disc = pretty_ideal(Kgen, self.disc) local_data = self.local_data local_data.sort(key=lambda ld: ld['normp']) badprimes = [ pretty_ideal(Kgen, ld['p'], enclose=False) for ld in local_data ] badnorms = [ld['normp'] for ld in local_data] disc_ords = [ld['ord_disc'] for ld in local_data] mindisc_ords = [ld['ord_disc'] for ld in local_data] cond_ords = [ld['ord_cond'] for ld in local_data] if self.conductor_norm == 1: self.cond = r"\((1)\)" self.fact_cond = self.cond self.fact_cond_norm = '1' else: self.cond = pretty_ideal(Kgen, self.conductor_ideal) self.fact_cond = latex_factorization(badprimes, cond_ords) self.fact_cond_norm = latex_factorization(badnorms, cond_ords) # Assumption: the curve models stored in the database are # either global minimal models or minimal at all but one # prime, so the list here has length 0 or 1: self.is_minimal = (len(self.non_min_p) == 0) self.has_minimal_model = self.is_minimal if not self.is_minimal: non_min_p = self.non_min_p[0] self.non_min_prime = pretty_ideal(Kgen, non_min_p) ip = [ld['p'] for ld in local_data].index(non_min_p) disc_ords[ip] += 12 Dnorm_factor = local_data[ip]['normp']**12 self.disc_norm = web_latex(Dnorm) signDnorm = 1 if Dnorm > 0 else -1 if Dnorm in [1, -1]: # since the factorization of (1) displays as "1" self.fact_disc = self.disc self.fact_disc_norm = str(Dnorm) else: self.fact_disc = latex_factorization(badprimes, disc_ords) self.fact_disc_norm = latex_factorization(badnorms, disc_ords, sign=signDnorm) if self.is_minimal: Dmin_norm = Dnorm self.mindisc = self.disc else: Dmin_norm = Dnorm // Dnorm_factor self.mindisc = pretty_ideal(Kgen, self.minD) self.mindisc_norm = web_latex(Dmin_norm) if Dmin_norm in [1, -1]: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc self.fact_mindisc_norm = self.mindisc_norm else: self.fact_mindisc = latex_factorization(badprimes, mindisc_ords) self.fact_mindisc_norm = latex_factorization(badnorms, mindisc_ords, sign=signDnorm) j = self.field.parse_NFelt(self.jinv) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work but take too long # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1). Note that we do # store the factorization of the denominator of j and display # that, which is the most interesting part. # When the equation is stored in the database as a latex string, # it may have extraneous double quotes at beginning and # end, which we fix here. We also strip out initial \( and \) # (if present) which are added in the template. try: self.equation = self.equation.replace('"', '').replace( r'\\(', '').replace(r'\\)', '') except AttributeError: self.equation = latex_equation(self.ainvs) # Images of Galois representations if not hasattr(self, 'galois_images'): #print "No Galois image data" self.galois_images = "?" self.nonmax_primes = "?" self.galois_data = [] else: self.galois_data = [{ 'p': p, 'image': im } for p, im in zip(self.nonmax_primes, self.galois_images)] # CM and End(E) self.cm_bool = "no" self.End = r"\(\Z\)" self.rational_cm = self.cm_type > 0 if self.cm: self.cm_sqf = integer_squarefree_part(ZZ(self.cm)) self.cm_bool = r"yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = r"\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = r"\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Galois images in CM case: if self.cm and self.galois_images != '?': self.cm_ramp = [ p for p in ZZ(self.cm).support() if p not in self.nonmax_primes ] self.cm_nramp = len(self.cm_ramp) if self.cm_nramp == 1: self.cm_ramp = self.cm_ramp[0] else: self.cm_ramp = ", ".join([str(p) for p in self.cm_ramp]) # Sato-Tate: self.ST = st_display_knowl('1.2.A.1.1a' if not self.cm_type else ( '1.2.B.2.1a' if self.cm_type < 0 else '1.2.B.1.1a')) # Q-curve / Base change try: qc = self.q_curve if qc is True: self.qc = "yes" elif qc is False: self.qc = "no" else: # just in case self.qc = "not determined" except AttributeError: self.qc = "not determined" # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "trivial" if self.tr == 1: self.tor_struct_pretty = r"\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple( self.torsion_structure) self.torsion_gens = [ web_point(parse_point(K, P)) for P in self.torsion_gens ] # BSD data # # We divide into 3 cases, based on rank_bounds [lb,ub], # analytic_rank ar, (lb=ngens always). The flag # self.bsd_status is set to one of the following: # # "unconditional" # lb=ar=ub: we always have reg but in some cases over sextic fields we do not have omega, Lvalue, sha. # i.e. [lb,ar,ub] = [r,r,r] # # "conditional" # lb=ar<ub: we always have reg but in some cases over sextic fields we do not have omega, Lvalue, sha. # e.g. [lb,ar,ub] = [0,0,2], [1,1,3] # # "missing_gens" # lb<ar<=ub # e.g. [lb,ar,ub] = [0,1,1], [0,2,2], [1,2,2], [0,1,3] # # "incomplete" # ar not computed. (We can always set lb=0, ub=Infinity.) # Rank and bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rank = None self.rk = "not available" try: self.rk_lb, self.rk_ub = self.rank_bounds except AttributeError: self.rk_lb = 0 self.rk_ub = Infinity self.rank_bounds = "not available" # Analytic rank try: self.ar = web_latex(self.analytic_rank) except AttributeError: self.analytic_rank = None self.ar = "not available" # for debugging: assert self.rk == "not available" or (self.rk_lb == self.rank and self.rank == self.rk_ub) assert self.ar == "not available" or (self.rk_lb <= self.analytic_rank and self.analytic_rank <= self.rk_ub) self.bsd_status = "incomplete" if self.analytic_rank is not None: if self.rk_lb == self.rk_ub: self.bsd_status = "unconditional" elif self.rk_lb == self.analytic_rank: self.bsd_status = "conditional" else: self.bsd_status = "missing_gens" # Regulator only in conditional/unconditional cases, or when we know the rank: if self.bsd_status in ["conditional", "unconditional"]: if self.ar == 0: self.reg = web_latex(1) # otherwise we only get 1.00000... else: try: self.reg = web_latex(self.reg) except AttributeError: self.reg = "not available" elif self.rk != "not available": self.reg = web_latex(self.reg) if self.rank else web_latex(1) else: self.reg = "not available" # Generators try: self.gens = [web_point(parse_point(K, P)) for P in self.gens] except AttributeError: self.gens = [] # Global period try: self.omega = web_latex(self.omega) except AttributeError: self.omega = "not available" # L-value try: r = int(self.analytic_rank) # lhs = "L(E,1) = " if r==0 else "L'(E,1) = " if r==1 else "L^{{({})}}(E,1)/{}! = ".format(r,r) self.Lvalue = web_latex(self.Lvalue) except (TypeError, AttributeError): self.Lvalue = "not available" # Tamagawa product tamagawa_numbers = [ZZ(_ld['cp']) for _ld in self.local_data] cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [ latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')' for cp in cp_fac ] if len(cp_fac) > 1: self.tamagawa_factors = r'\cdot'.join(cp_fac) else: self.tamagawa_factors = None self.tamagawa_product = web_latex(prod(tamagawa_numbers, 1)) # Analytic Sha try: self.sha = web_latex(self.sha) + " (rounded)" except AttributeError: self.sha = "not available" # Local data # The Kodaira symbol is stored as an int in pari encoding. The # conversion to latex must take into account the bug (in Sage # 9.2) for I_m^* when m has more than one digit. def latex_kod(kod): return latex( KodairaSymbol(kod)) if kod > -14 else 'I_{%s}^{*}' % (-kod - 4) for P, NP, ld in zip(badprimes, badnorms, local_data): ld['p'] = P ld['norm'] = NP ld['kod'] = latex_kod(ld['kod']) # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote( self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) # Isogeny information self.one_deg = ZZ(self.class_deg).is_prime() isodegs = [str(d) for d in self.isodeg if d > 1] if len(isodegs) < 3: self.isodeg = " and ".join(isodegs) else: self.isodeg = " and ".join([", ".join(isodegs[:-1]), isodegs[-1]]) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) lfun_url = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) origin_url = lfun_url.lstrip('/L/').rstrip('/') if sig[0] <= 2 and db.lfunc_instances.exists({'url': origin_url}): self.urls['Lfunction'] = lfun_url elif self.abs_disc**2 * self.conductor_norm < 70000: # we shouldn't trust the Lfun computed on the fly for large conductor self.urls['Lfunction'] = url_for( "l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) lfun_url = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) origin_url = lfun_url.lstrip('/L/').rstrip('/') if db.lfunc_instances.exists({'url': origin_url}): self.urls['Lfunction'] = lfun_url # most of this code is repeated in isog_class.py # and should be refactored self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field=self.field_label, jinv=rename_j(j)))] if totally_real and 'Lfunction' not in self.urls: self.friends += [('Hilbert modular form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: if "CM" in self.label: self.friends += [('Bianchi modular form is not cuspidal', '')] elif 'Lfunction' not in self.urls: if db.bmf_forms.label_exists(self.bmf_label): self.friends += [ ('Bianchi modular form %s' % self.bmf_label, self.bmf_url) ] else: self.friends += [ ('(Bianchi modular form %s)' % self.bmf_label, '') ] self.properties = [('Label', self.label)] # Plot if K.signature()[0]: self.plot = encode_plot( EC_nf_plot(K, self.ainvs, self.field.generator_name())) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) self.properties += [(None, self.plot_link)] self.properties += [('Base field', self.field.field_pretty())] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden (can be very large) # ('j-invariant', self.j), ('CM', self.cm_bool) ] if self.base_change: self.base_change = [ lab for lab in self.base_change if '?' not in lab ] self.properties += [ ('Base change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change])) ] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Base change', 'no')] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [(r'Base change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code() self.downloads = [('All stored data to text', url_for(".download_ECNF_all", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number))] for lang in [["Magma", "magma"], ["GP", "gp"], ["SageMath", "sage"]]: self.downloads.append( ('Code to {}'.format(lang[0]), url_for(".ecnf_code_download", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number, download_type=lang[1]))) self.downloads.append( ('Underlying data', url_for(".ecnf_data", label=self.label))) if 'Lfunction' in self.urls: Lfun = get_lfunction_by_url( self.urls['Lfunction'].lstrip('/L').rstrip('/'), projection=['degree', 'trace_hash', 'Lhash']) if Lfun is None: self.friends += [('L-function not available', "")] else: instances = get_instances_by_Lhash_and_trace_hash( Lfun['Lhash'], Lfun['degree'], Lfun.get('trace_hash')) exclude = { elt[1].rstrip('/').lstrip('/') for elt in self.friends if elt[1] } self.friends += names_and_urls(instances, exclude=exclude) self.friends += [('L-function', self.urls['Lfunction'])] else: self.friends += [('L-function not available', "")]
def make_class(self): self.ainvs_str = self.ainvs self.ainvs = [int(a) for a in self.ainvs_str] self.E = EllipticCurve(self.ainvs) self.CM = self.E.has_cm() try: # Extract the isogeny degree matrix from the database size = len(self.isogeny_matrix) from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) except AttributeError: # Failsafe: construct it from scratch self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix() size = self.isogeny_matrix.nrows() self.ncurves = size # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img # Create a list of the curves in the class from the database self.db_curves = [self.E] self.optimal_flags = [False] * size self.degrees = [0] * size if self.degree: self.degrees[0] = self.degree else: try: self.degrees[0] = self.E.modular_degree() except RuntimeError: pass # Fill in the curves in the class by looking each one up in the db: self.cremona_labels = [self.label] + [0] * (size - 1) if self.number == 1: self.optimal_flags[0] = True for i in range(2, size + 1): Edata = db_ec().find_one({'lmfdb_label': self.lmfdb_iso + str(i)}) Ei = EllipticCurve([int(a) for a in Edata['ainvs']]) self.cremona_labels[i - 1] = Edata['label'] if Edata['number'] == 1: self.optimal_flags[i - 1] = True if 'degree' in Edata: self.degrees[i - 1] = Edata['degree'] else: try: self.degrees[i - 1] = Ei.modular_degree() except RuntimeError: pass self.db_curves.append(Ei) if self.iso == '990h': # this isogeny class is labeled wrong in Cremona's tables self.optimal_flags = [False, False, True, False] self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) N, iso, number = split_lmfdb_label(self.lmfdb_iso) self.newform = web_latex(self.E.q_eigenform(10)) self.newform_label = newform_label(N,2,1,iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self.lfunction_link = url_for("l_functions.l_function_ec_page", label=self.lmfdb_iso) self.curves = [dict([('label',self.lmfdb_iso + str(i + 1)), ('url',url_for(".by_triple_label", conductor=N, iso_label=iso, number=i+1)), ('cremona_label',self.cremona_labels[i]), ('ainvs',str(list(c.ainvs()))), ('torsion',c.torsion_order()), ('degree',self.degrees[i]), ('optimal',self.optimal_flags[i])]) for i, c in enumerate(self.db_curves)] self.friends = [('L-function', self.lfunction_link)] if not self.CM: if int(N)<=300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))] if int(N)<=50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.properties = [('Label', self.lmfdb_iso), ('Number of curves', str(self.ncurves)), ('Conductor', '\(%s\)' % N), ('CM', '%s' % self.CM), ('Rank', '\(%s\)' % self.rank), ('Graph', ''),(None, self.graph_link) ] self.downloads = [('Download coefficients of newform', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=1000)), ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))] if self.lmfdb_iso == self.iso: self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso else: self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, ' ')] self.code = {} self.code['show'] = {'sage':''} # use default show names self.code['class'] = {'sage':'E = EllipticCurve("%s1")\n'%(self.lmfdb_iso) + 'E.isogeny_class()\n'} self.code['curves'] = {'sage':'E.isogeny_class().curves'} self.code['rank'] = {'sage':'E.rank()'} self.code['q_eigenform'] = {'sage':'E.q_eigenform(10)'} self.code['matrix'] = {'sage':'E.isogeny_class().matrix()'} self.code['plot'] = {'sage':'E.isogeny_graph().plot(edge_labels=True)'}
def plot_from_label(label): curve = db.g2c_curves.lookup(label) ratpts = db.g2c_ratpts.lookup(curve['label']) min_eqn = literal_eval(curve['eqn']) plot = encode_plot(eqn_list_to_curve_plot(min_eqn, ratpts['rat_pts'])) return plot
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these, construct the # actual elliptic curve E, and compute some further (easy) # data about it. # # Weierstrass equation data = self.data = {} data["ainvs"] = [int(ai) for ai in self.ainvs] self.E = EllipticCurve(data["ainvs"]) data["equation"] = web_latex(self.E) # conductor, j-invariant and discriminant data["conductor"] = N = ZZ(self.conductor) bad_primes = N.prime_factors() try: data["j_invariant"] = QQ(str(self.jinv)) except KeyError: data["j_invariant"] = self.E.j_invariant() data["j_inv_factor"] = latex(0) if data["j_invariant"]: data["j_inv_factor"] = latex(data["j_invariant"].factor()) data["j_inv_str"] = unicode(str(data["j_invariant"])) data["j_inv_latex"] = web_latex(data["j_invariant"]) data["disc"] = D = self.E.discriminant() data["disc_latex"] = web_latex(data["disc"]) data["disc_factor"] = latex(data["disc"].factor()) data["cond_factor"] = latex(N.factor()) data["cond_latex"] = web_latex(N) # CM and endomorphism ring data["CMD"] = self.cm data["CM"] = "no" data["EndE"] = "\(\Z\)" if self.cm: data["CM"] = "yes (\(D=%s\))" % data["CMD"] if data["CMD"] % 4 == 0: d4 = ZZ(data["CMD"]) // 4 data["EndE"] = "\(\Z[\sqrt{%s}]\)" % d4 else: data["EndE"] = "\(\Z[(1+\sqrt{%s})/2]\)" % data["CMD"] data["ST"] = '<a href="%s">$%s$</a>' % (url_for("st.by_label", label="1.2.N(U(1))"), "N(\\mathrm{U}(1))") else: data["ST"] = '<a href="%s">$%s$</a>' % (url_for("st.by_label", label="1.2.SU(2)"), "\\mathrm{SU}(2)") # modular degree try: data["degree"] = self.degree except AttributeError: try: data["degree"] = self.E.modular_degree() except RuntimeError: data["degree"] # invalid, but will be displayed nicely # Minimal quadratic twist E_pari = self.E.pari_curve() from sage.libs.pari.all import PariError try: minq, minqD = self.E.minimal_quadratic_twist() except PariError: # this does occur with 164411a1 ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label) minq = self.E minqD = 1 data["minq_D"] = minqD if self.E == minq: data["minq_label"] = self.lmfdb_label data["minq_info"] = "(itself)" else: minq_ainvs = [str(c) for c in minq.ainvs()] data["minq_label"] = db_ec().find_one({"jinv": str(self.E.j_invariant()), "ainvs": minq_ainvs})[ "lmfdb_label" ] data["minq_info"] = "(by %s)" % minqD minq_N, minq_iso, minq_number = split_lmfdb_label(data["minq_label"]) # rational and integral points mw = self.mw = {} xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords] xintpoints = [P.xy() for P in xintpoints_projective] mw["int_points"] = ", ".join(web_latex(P) for P in xintpoints) # Generators of infinite order mw["rank"] = self.rank try: self.generators = [self.E(g) for g in parse_points(self.gens)] mw["generators"] = [web_latex(P.xy()) for P in self.generators] mw["heights"] = [P.height() for P in self.generators] except AttributeError: mw["generators"] = "" mw["heights"] = [] # Torsion subgroup: order, structure, generators mw["tor_order"] = self.torsion tor_struct = [int(c) for c in self.torsion_structure] if mw["tor_order"] == 1: mw["tor_struct"] = "\mathrm{Trivial}" mw["tor_gens"] = "" else: mw["tor_struct"] = " \\times ".join(["\Z/{%s}\Z" % n for n in tor_struct]) mw["tor_gens"] = ", ".join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators)) # Images of Galois representations try: data["galois_images"] = [trim_galois_image_code(s) for s in self.galois_images] data["non_surjective_primes"] = self.non_surjective_primes except AttributeError: # print "No Galois image data" data["galois_images"] = [] data["non_surjective_primes"] = [] data["galois_data"] = [ {"p": p, "image": im} for p, im in zip(data["non_surjective_primes"], data["galois_images"]) ] if self.twoadic_gens: from sage.matrix.all import Matrix data["twoadic_gen_matrices"] = ",".join([latex(Matrix(2, 2, M)) for M in self.twoadic_gens]) data["twoadic_rouse_url"] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & BSD data bsd = self.bsd = {} r = self.rank if r >= 2: bsd["lder_name"] = "L^{(%s)}(E,1)/%s!" % (r, r) elif r: bsd["lder_name"] = "L'(E,1)" else: bsd["lder_name"] = "L(E,1)" bsd["reg"] = self.regulator bsd["omega"] = self.real_period bsd["sha"] = int(0.1 + self.sha_an) bsd["lder"] = self.special_value # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == "990h": data["Gamma0optimal"] = bool(self.number == 3) else: data["Gamma0optimal"] = bool(self.number == 1) data["p_adic_data_exists"] = False if data["Gamma0optimal"]: data["p_adic_data_exists"] = (padic_db().find({"lmfdb_iso": self.lmfdb_iso}).count()) > 0 data["p_adic_primes"] = [p for p in sage.all.prime_range(5, 100) if self.E.is_ordinary(p) and not p.divides(N)] # Local data local_data = self.local_data = [] # if we use E.tamagawa_numbers() it calls E.local_data(p) which # used to crash on some curves e.g. 164411a1 tamagawa_numbers = [] for p in bad_primes: local_info = self.E.local_data(p, algorithm="generic") local_data_p = {} local_data_p["p"] = p local_data_p["tamagawa_number"] = local_info.tamagawa_number() tamagawa_numbers.append(ZZ(local_info.tamagawa_number())) local_data_p["kodaira_symbol"] = web_latex(local_info.kodaira_symbol()).replace("$", "") local_data_p["reduction_type"] = local_info.bad_reduction_type() local_data_p["ord_cond"] = local_info.conductor_valuation() local_data_p["ord_disc"] = local_info.discriminant_valuation() local_data_p["ord_den_j"] = max(0, -self.E.j_invariant().valuation(p)) local_data.append(local_data_p) cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [latex(cp) if len(cp) < 2 else "(" + latex(cp) + ")" for cp in cp_fac] bsd["tamagawa_factors"] = r"\cdot".join(cp_fac) bsd["tamagawa_product"] = sage.misc.all.prod(tamagawa_numbers) cond, iso, num = split_lmfdb_label(self.lmfdb_label) data["newform"] = web_latex(self.E.q_eigenform(10)) self.newform_label = newform_label(cond, 2, 1, iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) newform_exists_in_db = is_newform_in_db(self.newform_label) self._code = None self.friends = [ ("Isogeny class " + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ( "Minimal quadratic twist %s %s" % (data["minq_info"], data["minq_label"]), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number), ), ("All twists ", url_for(".rational_elliptic_curves", jinv=self.jinv)), ("L-function", url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)), ] if not self.cm: if N <= 300: self.friends += [ ( "Symmetric square L-function", url_for("l_functions.l_function_ec_sym_page", power="2", label=self.lmfdb_iso), ) ] if N <= 50: self.friends += [ ( "Symmetric cube L-function", url_for("l_functions.l_function_ec_sym_page", power="3", label=self.lmfdb_iso), ) ] if newform_exists_in_db: self.friends += [("Modular form " + self.newform_label, self.newform_link)] self.downloads = [ ("Download coefficients of q-expansion", url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)), ("Download all stored data", url_for(".download_EC_all", label=self.lmfdb_label)), ( "Download Magma code", url_for( ".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type="magma", ), ), ( "Download Sage code", url_for( ".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type="sage", ), ), ( "Download GP code", url_for( ".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type="gp" ), ), ] self.plot = encode_plot(self.E.plot()) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [ ("Label", self.lmfdb_label), (None, self.plot_link), ("Conductor", "\(%s\)" % data["conductor"]), ("Discriminant", "\(%s\)" % data["disc"]), ("j-invariant", "%s" % data["j_inv_latex"]), ("CM", "%s" % data["CM"]), ("Rank", "\(%s\)" % mw["rank"]), ("Torsion Structure", "\(%s\)" % mw["tor_struct"]), ] self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label) self.bread = [ ("Elliptic Curves", url_for("ecnf.index")), ("$\Q$", url_for(".rational_elliptic_curves")), ("%s" % N, url_for(".by_conductor", conductor=N)), ("%s" % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ("%s" % num, " "), ]
def make_E(self): #print("Creating ECNF object for {}".format(self.label)) #sys.stdout.flush() K = self.field.K() # a-invariants self.ainvs = parse_ainvs(K, self.ainvs) self.latex_ainvs = web_latex(self.ainvs) self.numb = str(self.number) # Conductor, discriminant, j-invariant if self.conductor_norm == 1: N = K.ideal(1) else: N = ideal_from_string(K, self.conductor_ideal) # The following can trigger expensive computations! #self.cond = web_latex(N) self.cond = pretty_ideal(N) self.cond_norm = web_latex(self.conductor_norm) local_data = self.local_data # NB badprimes is a list of primes which divide the # discriminant of this model. At most one of these might # actually be a prime of good reduction, if the curve has no # global minimal model. badprimes = [ideal_from_string(K, ld['p']) for ld in local_data] badnorms = [ZZ(ld['normp']) for ld in local_data] mindisc_ords = [ld['ord_disc'] for ld in local_data] # Assumption: the curve models stored in the database are # either global minimal models or minimal at all but one # prime, so the list here has length 0 or 1: self.non_min_primes = [ideal_from_string(K, P) for P in self.non_min_p] self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = self.is_minimal disc_ords = [ld['ord_disc'] for ld in local_data] if not self.is_minimal: Pmin = self.non_min_primes[0] P_index = badprimes.index(Pmin) self.non_min_prime = pretty_ideal(Pmin) disc_ords[P_index] += 12 if self.conductor_norm == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond self.fact_cond_norm = '1' else: Nfac = Factorization([(P, ld['ord_cond']) for P, ld in zip(badprimes, local_data)]) self.fact_cond = web_latex_ideal_fact(Nfac) Nnormfac = Factorization([(q, ld['ord_cond']) for q, ld in zip(badnorms, local_data)]) self.fact_cond_norm = web_latex(Nnormfac) # D is the discriminant ideal of the model D = prod([P**e for P, e in zip(badprimes, disc_ords)], K.ideal(1)) self.disc = pretty_ideal(D) Dnorm = D.norm() self.disc_norm = web_latex(Dnorm) if Dnorm == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc self.fact_disc_norm = '1' else: Dfac = Factorization([(P, e) for P, e in zip(badprimes, disc_ords)]) self.fact_disc = web_latex_ideal_fact(Dfac) Dnormfac = Factorization([(q, e) for q, e in zip(badnorms, disc_ords)]) self.fact_disc_norm = web_latex(Dnormfac) if not self.is_minimal: Dmin = ideal_from_string(K, self.minD) self.mindisc = pretty_ideal(Dmin) Dmin_norm = Dmin.norm() self.mindisc_norm = web_latex(Dmin_norm) if Dmin_norm == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc self.fact_mindisc_norm = self.mindisc_norm else: Dminfac = Factorization(list(zip(badprimes, mindisc_ords))) self.fact_mindisc = web_latex_ideal_fact(Dminfac) Dminnormfac = Factorization(list(zip(badnorms, mindisc_ords))) self.fact_mindisc_norm = web_latex(Dminnormfac) j = self.field.parse_NFelt(self.jinv) # if j: # d = j.denominator() # n = d * j # numerator exists for quadratic fields only! # g = GCD(list(n)) # n1 = n / g # self.j = web_latex(n1) # if d != 1: # if n1 > 1: # # self.j = "("+self.j+")\(/\)"+web_latex(d) # self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) # else: # self.j = web_latex(d) # if g > 1: # if n1 > 1: # self.j = web_latex(g) + self.j # else: # self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work but take too long # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1). Note that we do # store the factorization of the denominator of j and display # that, which is the most interesting part. # The equation is stored in the database as a latex string. # Some of these have extraneous double quotes at beginning and # end, shich we fix here. We also strip out initial \( and \) # (if present) which are added in the template. self.equation = self.equation.replace('"', '').replace('\\(', '').replace( '\\)', '') # Images of Galois representations if not hasattr(self, 'galois_images'): #print "No Galois image data" self.galois_images = "?" self.non_surjective_primes = "?" self.galois_data = [] else: self.galois_data = [{ 'p': p, 'image': im } for p, im in zip(self.non_surjective_primes, self.galois_images)] # CM and End(E) self.cm_bool = "no" self.End = r"\(\Z\)" if self.cm: # When we switch to storing rational cm by having |D| in # the column, change the following lines: if self.cm > 0: self.rational_cm = True self.cm = -self.cm else: self.rational_cm = K(self.cm).is_square() self.cm_sqf = ZZ(self.cm).squarefree_part() self.cm_bool = r"yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = r"\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = r"\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Galois images in CM case: if self.cm and self.galois_images != '?': self.cm_ramp = [ p for p in ZZ(self.cm).support() if not p in self.non_surjective_primes ] self.cm_nramp = len(self.cm_ramp) if self.cm_nramp == 1: self.cm_ramp = self.cm_ramp[0] else: self.cm_ramp = ", ".join([str(p) for p in self.cm_ramp]) # Sato-Tate: # The lines below will need to change once we have curves over non-quadratic fields # that contain the Hilbert class field of an imaginary quadratic field if self.cm: if self.signature == [0, 1] and ZZ( -self.abs_disc * self.cm).is_square(): self.ST = st_link_by_name(1, 2, 'U(1)') else: self.ST = st_link_by_name(1, 2, 'N(U(1))') else: self.ST = st_link_by_name(1, 2, 'SU(2)') # Q-curve / Base change try: qc = self.q_curve if qc is True: self.qc = "yes" elif qc is False: self.qc = "no" else: # just in case self.qc = "not determined" except AttributeError: self.qc = "not determined" # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "trivial" if self.tr == 1: self.tor_struct_pretty = r"\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple( self.torsion_structure) self.torsion_gens = [ web_point(parse_point(K, P)) for P in self.torsion_gens ] # BSD data # # We divide into 3 cases, based on rank_bounds [lb,ub], # analytic_rank ar, (lb=ngens always). The flag # self.bsd_status is set to one of the following: # # "unconditional" # lb=ar=ub: we always have reg but in some cases over sextic fields we do not have omega, Lvalue, sha. # i.e. [lb,ar,ub] = [r,r,r] # # "conditional" # lb=ar<ub: we always have reg but in some cases over sextic fields we do not have omega, Lvalue, sha. # e.g. [lb,ar,ub] = [0,0,2], [1,1,3] # # "missing_gens" # lb<ar<=ub # e.g. [lb,ar,ub] = [0,1,1], [0,2,2], [1,2,2], [0,1,3] # # "incomplete" # ar not computed. (We can always set lb=0, ub=Infinity.) # Rank and bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rank = None self.rk = "not available" try: self.rk_lb, self.rk_ub = self.rank_bounds except AttributeError: self.rk_lb = 0 self.rk_ub = Infinity self.rank_bounds = "not available" # Analytic rank try: self.ar = web_latex(self.analytic_rank) except AttributeError: self.analytic_rank = None self.ar = "not available" # for debugging: assert self.rk == "not available" or (self.rk_lb == self.rank and self.rank == self.rk_ub) assert self.ar == "not available" or (self.rk_lb <= self.analytic_rank and self.analytic_rank <= self.rk_ub) self.bsd_status = "incomplete" if self.analytic_rank != None: if self.rk_lb == self.rk_ub: self.bsd_status = "unconditional" elif self.rk_lb == self.analytic_rank: self.bsd_status = "conditional" else: self.bsd_status = "missing_gens" # Regulator only in conditional/unconditional cases, or when we know the rank: if self.bsd_status in ["conditional", "unconditional"]: if self.ar == 0: self.reg = web_latex(1) # otherwise we only get 1.00000... else: try: self.reg = web_latex(self.reg) except AttributeError: self.reg = "not available" elif self.rk != "not available": self.reg = web_latex(self.reg) if self.rank else web_latex(1) else: self.reg = "not available" # Generators try: self.gens = [web_point(parse_point(K, P)) for P in self.gens] except AttributeError: self.gens = [] # Global period try: self.omega = web_latex(self.omega) except AttributeError: self.omega = "not available" # L-value try: r = int(self.analytic_rank) # lhs = "L(E,1) = " if r==0 else "L'(E,1) = " if r==1 else "L^{{({})}}(E,1)/{}! = ".format(r,r) self.Lvalue = "\\(" + str(self.Lvalue) + "\\)" except (TypeError, AttributeError): self.Lvalue = "not available" # Tamagawa product tamagawa_numbers = [ZZ(_ld['cp']) for _ld in self.local_data] cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [ latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')' for cp in cp_fac ] if len(cp_fac) > 1: self.tamagawa_factors = r'\cdot'.join(cp_fac) else: self.tamagawa_factors = None self.tamagawa_product = web_latex(prod(tamagawa_numbers, 1)) # Analytic Sha try: self.sha = web_latex(self.sha) + " (rounded)" except AttributeError: self.sha = "not available" # Local data # Fix for Kodaira symbols, which in the database start and end # with \( and \) and may have multiple backslashes. Note that # to put a single backslash into a python string you have to # use '\\' which will display as '\\' but only counts as one # character in the string. which are added in the template. def tidy_kod(kod): while '\\\\' in kod: kod = kod.replace('\\\\', '\\') kod = kod.replace('\\(', '').replace('\\)', '') return kod for P, ld in zip(badprimes, local_data): ld['p'] = web_latex(P) ld['norm'] = P.norm() ld['kod'] = tidy_kod(ld['kod']) # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote( self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) # Isogeny information self.one_deg = ZZ(self.class_deg).is_prime() isodegs = [str(d) for d in self.isodeg if d > 1] if len(isodegs) < 3: self.isodeg = " and ".join(isodegs) else: self.isodeg = " and ".join([", ".join(isodegs[:-1]), isodegs[-1]]) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) lfun_url = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) origin_url = lfun_url.lstrip('/L/').rstrip('/') if sig[0] <= 2 and db.lfunc_instances.exists({'url': origin_url}): self.urls['Lfunction'] = lfun_url elif self.abs_disc**2 * self.conductor_norm < 70000: # we shouldn't trust the Lfun computed on the fly for large conductor self.urls['Lfunction'] = url_for( "l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) lfun_url = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) origin_url = lfun_url.lstrip('/L/').rstrip('/') if db.lfunc_instances.exists({'url': origin_url}): self.urls['Lfunction'] = lfun_url # most of this code is repeated in isog_class.py # and should be refactored self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field=self.field_label, jinv=rename_j(j)))] if totally_real and not 'Lfunction' in self.urls: self.friends += [('Hilbert modular form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: if "CM" in self.label: self.friends += [('Bianchi modular form is not cuspidal', '')] elif not 'Lfunction' in self.urls: if db.bmf_forms.label_exists(self.bmf_label): self.friends += [ ('Bianchi modular form %s' % self.bmf_label, self.bmf_url) ] else: self.friends += [ ('(Bianchi modular form %s)' % self.bmf_label, '') ] self.properties = [('Label', self.label)] # Plot if K.signature()[0]: self.plot = encode_plot( EC_nf_plot(K, self.ainvs, self.field.generator_name())) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) self.properties += [(None, self.plot_link)] self.properties += [('Base field', self.field.field_pretty())] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden (can be very large) # ('j-invariant', self.j), ('CM', self.cm_bool) ] if self.base_change: self.properties += [ ('Base change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change])) ] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Base change', 'no')] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [(r'Base change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code() self.downloads = [('All stored data to text', url_for(".download_ECNF_all", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number))] for lang in [["Magma", "magma"], ["SageMath", "sage"], ["GP", "gp"]]: self.downloads.append( ('Code to {}'.format(lang[0]), url_for(".ecnf_code_download", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number, download_type=lang[1]))) if 'Lfunction' in self.urls: Lfun = get_lfunction_by_url( self.urls['Lfunction'].lstrip('/L').rstrip('/'), projection=['degree', 'trace_hash', 'Lhash']) if Lfun is None: self.friends += [('L-function not available', "")] else: instances = get_instances_by_Lhash_and_trace_hash( Lfun['Lhash'], Lfun['degree'], Lfun.get('trace_hash')) exclude = { elt[1].rstrip('/').lstrip('/') for elt in self.friends if elt[1] } self.friends += names_and_urls(instances, exclude=exclude) self.friends += [('L-function', self.urls['Lfunction'])] else: self.friends += [('L-function not available', "")]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these. # Old version: required constructing the actual elliptic curve # E, and computing some further data about it. # New version (May 2016): extra data fields now in the # database so we do not have to construct the curve or do any # computation with it on the fly. As a failsafe the old way # is still included. data = self.data = {} data['ainvs'] = self.ainvs data['conductor'] = N = ZZ(self.conductor) data['j_invariant'] = QQ(str(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) # extract data about MW rank, generators, heights and torsion: self.make_mw() # get more data from the database entry data['equation'] = self.equation local_data = self.local_data D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data]) data['disc'] = D Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD)) data['minq_D'] = minqD = self.min_quad_twist['disc'] minq_label = self.min_quad_twist['label'] data['minq_label'] = db.ec_curves.lucky({'label': minq_label}, 'lmfdb_label') data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD if self.degree is None: data['degree'] = 0 # invalid, but will be displayed nicely else: data['degree'] = self.degree if self.number == 1: data['an'] = self.anlist data['ap'] = self.aplist else: r = db.ec_curves.lucky({'lmfdb_iso': self.lmfdb_iso, 'number': 1}) data['an'] = r['anlist'] data['ap'] = r['aplist'] minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) data['disc_factor'] = latex(Dfac) data['cond_factor'] = latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) data['galois_images'] = [ trim_galois_image_code(s) for s in self.mod_p_images ] data['non_maximal_primes'] = self.non_maximal_primes data['galois_data'] = [{ 'p': p, 'image': im } for p, im in zip(data['non_maximal_primes'], data['galois_images'])] data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['cm_ramp'] = [ p for p in ZZ(self.cm).support() if not p in self.non_maximal_primes ] data['cm_nramp'] = len(data['cm_ramp']) if data['cm_nramp'] == 1: data['cm_ramp'] = data['cm_ramp'][0] else: data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']]) data['cm_sqf'] = ZZ(self.cm).squarefree_part() data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD'] % 4 == 0: d4 = ZZ(data['CMD']) // 4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = st_link_by_name(1, 2, 'N(U(1))') else: data['ST'] = st_link_by_name(1, 2, 'SU(2)') data['p_adic_primes'] = [ p for i, p in enumerate(prime_range(5, 100)) if (N * data['ap'][i]) % p != 0 ] cond, iso, num = split_lmfdb_label(self.lmfdb_label) self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.one_deg = ZZ(self.class_deg).is_prime() self.ncurves = db.ec_curves.count({'lmfdb_iso': self.lmfdb_iso}) isodegs = [str(d) for d in self.isogeny_degrees if d > 1] if len(isodegs) < 3: data['isogeny_degrees'] = " and ".join(isodegs) else: data['isogeny_degrees'] = " and ".join( [", ".join(isodegs[:-1]), isodegs[-1]]) if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join( [latex(Matrix(2, 2, M)) for M in self.twoadic_gens]) data[ 'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & other BSD data self.make_bsd() # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = db.ec_padic.exists( {'lmfdb_iso': self.lmfdb_iso}) # Iwasawa data (where present) self.make_iwasawa() # Torsion growth data (where present) self.make_torsion_growth() data['newform'] = web_latex( PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform_label'] = self.newform_label = newform_label( cond, 2, 1, iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self._code = None self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", conductor_label=N, isogeny_class_label=iso))] if not self.cm: if N <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor=N, isogeny=iso))] if N <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor=N, isogeny=iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)), ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Download SageMath code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % self.mw['rank']), ('Torsion Structure', '\(%s\)' % self.mw['tor_struct'])] self.title = "Elliptic Curve %s (Cremona label %s)" % ( self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num, ' ')]
def make_class(self): self.CM = self.cm N, iso, number = split_lmfdb_label(self.lmfdb_iso) self.conductor = int(N) # Extract the size of the isogeny class from the database self.ncurves = ncurves = self.class_size # Create a list of the curves in the class from the database number_key = 'number' if self.label_type == 'Cremona' else 'lmfdb_number' self.curves = [ db.ec_curves.lucky({ 'iso': self.iso, number_key: i + 1 }) for i in range(ncurves) ] # Set optimality flags. The optimal curve is number 1 except # in one case which is labeled differently in the Cremona tables self.optimality_known = (self.ncurves == 1) or (self.conductor < OPTIMALITY_BOUND) self.optimality_bound = OPTIMALITY_BOUND for c in self.curves: c['optimal'] = (c['number'] == (3 if self.iso == '990h' else 1)) c['ai'] = c['ainvs'] c['curve_url_lmfdb'] = url_for(".by_triple_label", conductor=N, iso_label=iso, number=c['lmfdb_number']) c['curve_url_cremona'] = url_for(".by_ec_label", label=c['label']) if self.label_type == 'Cremona': c['curve_label'] = c['label'] _, c_iso, c_number = split_cremona_label(c['label']) else: c['curve_label'] = c['lmfdb_label'] _, c_iso, c_number = split_lmfdb_label(c['lmfdb_label']) c['short_label'] = "{}{}".format(c_iso, c_number) from sage.matrix.all import Matrix if self.label_type == 'Cremona': # permute rows/cols perm = lambda i: (c for c in self.curves if c['number'] == i + 1 ).next()['lmfdb_number'] - 1 self.isogeny_matrix = [[ self.isogeny_matrix[perm(i)][perm(j)] for i in range(ncurves) ] for j in range(ncurves)] self.isogeny_matrix = Matrix(self.isogeny_matrix) self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) # Create isogeny graph with appropriate vertex labels: self.graph = make_graph(self.isogeny_matrix, [c['short_label'] for c in self.curves]) P = self.graph.plot(edge_labels=True, vertex_size=1000) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.newform = web_latex( PowerSeriesRing(QQ, 'q')(self.anlist, 20, check=True)) self.newform_label = db.mf_newforms.lucky( { 'level': N, 'weight': 2, 'related_objects': { '$contains': 'EllipticCurve/Q/%s/%s' % (N, iso) } }, 'label') self.newform_exists_in_db = self.newform_label is not None if self.newform_label is not None: char_orbit, hecke_orbit = self.newform_label.split('.')[2:] self.newform_link = url_for("cmf.by_url_newform_label", level=N, weight=2, char_orbit_label=char_orbit, hecke_orbit=hecke_orbit) self.lfunction_link = url_for("l_functions.l_function_ec_page", conductor_label=N, isogeny_class_label=iso) self.friends = [('L-function', self.lfunction_link)] if not self.CM: self.CM = "no" if int(N) <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor=N, isogeny=iso))] if int(N) <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor=N, isogeny=iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] if self.label_type == 'Cremona': self.title = "Elliptic Curve Isogeny Class with Cremona label {} (LMFDB label {})".format( self.iso, self.lmfdb_iso) self.iso_label = self.iso else: self.title = "Elliptic Curve Isogeny Class with LMFDB label {} (Cremona label {})".format( self.lmfdb_iso, self.iso) self.iso_label = self.lmfdb_iso self.properties = [ ('Label', self.iso if self.label_type == 'Cremona' else self.lmfdb_iso), ('Number of curves', str(ncurves)), ('Conductor', '%s' % N), ('CM', '%s' % self.CM), ('Rank', '%s' % self.rank) ] if self.ncurves > 1: self.properties += [('Graph', ''), (None, self.graph_link)] self.downloads = [('q-expansion to text', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=1000)), ('All stored data to text', url_for(".download_EC_all", label=self.lmfdb_iso))] self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, ' ')] self.code = {} self.code['show'] = {'sage': ''} # use default show names self.code['class'] = { 'sage': 'E = EllipticCurve("%s1")\n' % (self.lmfdb_iso) + 'E.isogeny_class()\n' } self.code['curves'] = {'sage': 'E.isogeny_class().curves'} self.code['rank'] = {'sage': 'E.rank()'} self.code['q_eigenform'] = {'sage': 'E.q_eigenform(10)'} self.code['matrix'] = {'sage': 'E.isogeny_class().matrix()'} self.code['plot'] = { 'sage': 'E.isogeny_graph().plot(edge_labels=True)' }
def make_E(self): coeffs = self.ainvs # list of 5 lists of d strings self.ainvs = [self.field.parse_NFelt(x) for x in coeffs] self.latex_ainvs = web_latex(self.ainvs) from sage.schemes.elliptic_curves.all import EllipticCurve self.E = E = EllipticCurve(self.ainvs) self.equn = web_latex(E) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = E.conductor() self.cond = web_latex(N) self.cond_norm = web_latex(N.norm()) if N.norm() == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond else: self.fact_cond = web_latex_ideal_fact(N.factor()) self.fact_cond_norm = web_latex(N.norm().factor()) D = self.field.K().ideal(E.discriminant()) self.disc = web_latex(D) self.disc_norm = web_latex(D.norm()) if D.norm() == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc else: self.fact_disc = web_latex_ideal_fact(D.factor()) self.fact_disc_norm = web_latex(D.norm().factor()) # Minimal model? # # All curves in the database should be given # by models which are globally minimal if possible, else # minimal at all but one prime. But we do not rely on this # here, and the display should be correct if either (1) there # exists a global minimal model but this model is not; or (2) # this model is non-minimal at more than one prime. # self.non_min_primes = non_minimal_primes(E) self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = True if not self.is_minimal: self.non_min_prime = ','.join([web_latex(P) for P in self.non_min_primes]) self.has_minimal_model = has_global_minimal_model(E) if not self.is_minimal: Dmin = minimal_discriminant_ideal(E) self.mindisc = web_latex(Dmin) self.mindisc_norm = web_latex(Dmin.norm()) if Dmin.norm() == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc else: self.fact_mindisc = web_latex_ideal_fact(Dmin.factor()) self.fact_mindisc_norm = web_latex(Dmin.norm().factor()) j = E.j_invariant() if j: d = j.denominator() n = d * j # numerator exists for quadratic fields only! g = GCD(list(n)) n1 = n / g self.j = web_latex(n1) if d != 1: if n1 > 1: # self.j = "("+self.j+")\(/\)"+web_latex(d) self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) else: self.j = web_latex(d) if g > 1: if n1 > 1: self.j = web_latex(g) + self.j else: self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work bu take too long (e.g. EllipticCurve/6.6.371293.1/1.1/a/1) # If these are really wanted, they could be precomputed and stored in the db if j.is_zero(): self.fact_j = web_latex(j) else: if self.field.K().degree() < 3: #j.numerator_ideal().norm()<1000000000000: try: self.fact_j = web_latex(j.factor()) except (ArithmeticError, ValueError): # if not all prime ideal factors principal pass # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # The line below will need to change once we have curves over non-quadratic fields # that contain the Hilbert class field of an imaginary quadratic field if self.signature == [0,1] and ZZ(-self.abs_disc*self.cm).is_square(): self.ST = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.U(1)'),'\\mathrm{U}(1)') else: self.ST = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.N(U(1))'),'N(\\mathrm{U}(1))') else: self.ST = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.SU(2)'),'\\mathrm{SU}(2)') # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(self.torsion_structure) torsion_gens = [E([self.field.parse_NFelt(x) for x in P]) for P in self.torsion_gens] self.torsion_gens = ",".join([web_latex(P) for P in torsion_gens]) # Rank or bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.rank_bounds) except AttributeError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not available" # Generators try: gens = [E([self.field.parse_NFelt(x) for x in P]) for P in self.gens] self.gens = ", ".join([web_latex(P) for P in gens]) if self.rk == "?": self.reg = "not available" else: if gens: self.reg = E.regulator_of_points(gens) else: self.reg = 1 # otherwise we only get 1.00000... except AttributeError: self.gens = "not available" self.reg = "not available" try: if self.rank == 0: self.reg = 1 except AttributeError: pass # Local data self.local_data = [] for p in N.prime_factors(): self.local_info = E.local_data(p, algorithm="generic") self.local_data.append({'p': web_latex(p), 'norm': web_latex(p.norm().factor()), 'tamagawa_number': self.local_info.tamagawa_number(), 'kodaira_symbol': web_latex(self.local_info.kodaira_symbol()).replace('$', ''), 'reduction_type': self.local_info.bad_reduction_type(), 'ord_den_j': max(0, -E.j_invariant().valuation(p)), 'ord_mindisc': self.local_info.discriminant_valuation(), 'ord_cond': self.local_info.conductor_valuation() }) # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote(self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote(self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) sig = self.signature real_quadratic = sig == [2,0] totally_real = sig[1] == 0 imag_quadratic = sig == [0,1] if totally_real: self.hmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join([self.field.label, self.conductor_label, self.iso_label]) self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field_label=self.field_label, jinv=self.jinv))] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] self.friends += [('L-function', self.urls['Lfunction'])] if imag_quadratic: self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')] self.properties = [ ('Base field', self.field.field_pretty()), ('Label', self.label)] # Plot if E.base_field().signature()[0]: self.plot = encode_plot(EC_nf_plot(E, self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden # ('j-invariant', self.j), ('CM', self.cm_bool)] if self.base_change: self.properties += [('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change]))] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code()
def make_class(self): self.ainvs_str = self.ainvs self.ainvs = [int(a) for a in self.ainvs_str] self.E = EllipticCurve(self.ainvs) self.CM = self.E.has_cm() try: # Extract the isogeny degree matrix from the database size = len(self.isogeny_matrix) from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) except AttributeError: # Failsafe: construct it from scratch self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix() size = self.isogeny_matrix.nrows() self.ncurves = size # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img # Create a list of the curves in the class from the database self.db_curves = [self.E] self.optimal_flags = [False] * size self.degrees = [0] * size if self.degree: self.degrees[0] = self.degree else: try: self.degrees[0] = self.E.modular_degree() except RuntimeError: pass # Fill in the curves in the class by looking each one up in the db: self.cremona_labels = [self.label] + [0] * (size - 1) if self.number == 1: self.optimal_flags[0] = True for i in range(2, size + 1): Edata = db_ec().find_one({'lmfdb_label': self.lmfdb_iso + str(i)}) Ei = EllipticCurve([int(a) for a in Edata['ainvs']]) self.cremona_labels[i - 1] = Edata['label'] if Edata['number'] == 1: self.optimal_flags[i - 1] = True if 'degree' in Edata: self.degrees[i - 1] = Edata['degree'] else: try: self.degrees[i - 1] = Ei.modular_degree() except RuntimeError: pass self.db_curves.append(Ei) if self.iso == '990h': # this isogeny class is labeled wrong in Cremona's tables self.optimal_flags = [False, False, True, False] self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) N, iso, number = split_lmfdb_label(self.lmfdb_iso) self.newform = web_latex(self.E.q_eigenform(10)) self.newform_label = newform_label(N, 2, 1, iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso) newform_exists_in_db = is_newform_in_db(self.newform_label) self.lfunction_link = url_for("l_functions.l_function_ec_page", label=self.lmfdb_iso) self.curves = [ dict([('label', self.lmfdb_iso + str(i + 1)), ('url', url_for(".by_triple_label", conductor=N, iso_label=iso, number=i + 1)), ('cremona_label', self.cremona_labels[i]), ('ainvs', str(list(c.ainvs()))), ('torsion', c.torsion_order()), ('degree', self.degrees[i]), ('optimal', self.optimal_flags[i])]) for i, c in enumerate(self.db_curves) ] self.friends = [('L-function', self.lfunction_link)] if not self.CM: if int(N) <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))] if int(N) <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))] if newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.properties = [('Label', self.lmfdb_iso), ('Number of curves', str(self.ncurves)), ('Conductor', '\(%s\)' % N), ('CM', '%s' % self.CM), ('Rank', '\(%s\)' % self.rank), ('Graph', ''), (None, self.graph_link)] self.downloads = [('Download coefficients of newform', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=100)), ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))] if self.lmfdb_iso == self.iso: self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso else: self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % ( self.lmfdb_iso, self.iso) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, ' ')]
def make_class(self): # Create a list of the curves in the class from the database self.db_curves = [ c for c in db_ecnf().find({ 'field_label': self.field_label, 'conductor_norm': self.conductor_norm, 'conductor_label': self.conductor_label, 'iso_nlabel': self.iso_nlabel }).sort('number') ] # Rank or bounds try: self.rk = web_latex(self.db_curves[0]['rank']) except KeyError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.db_curves[0]['rank_bounds']) except KeyError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not recorded" # Extract the isogeny degree matrix from the database if not hasattr(self, 'isogeny_matrix'): # this would happen if the class is initiated with a curve # which is not #1 in its class: self.isogeny_matrix = self.db_curves[0].isogeny_matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) self.one_deg = ZZ(self.class_deg).is_prime() # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(Matrix(self.isogeny_matrix)) self.field = FIELD(self.field_label) self.field_name = field_pretty(self.field_label) self.field_knowl = nf_display_knowl(self.field_label, lmfdb.base.getDBConnection(), self.field_name) def curve_url(c): return url_for(".show_ecnf", nf=c['field_label'], conductor_label=c['conductor_label'], class_label=c['iso_label'], number=c['number']) self.curves = [[ c['short_label'], curve_url(c), web_ainvs(self.field_label, c['ainvs']) ] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.field_label) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join( [self.field_label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field_label, label=self.hmf_label) if sig[0] <= 2: self.urls['Lfunction'] = url_for( "l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) elif self.abs_disc**2 * self.conductor_norm < 40000: # we shouldn't trust the Lfun computed on the fly for large conductor self.urls['Lfunction'] = url_for( "l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join( [self.field_label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) self.urls['Lfunction'] = url_for( "l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) self.friends = [] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: #self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')] self.friends += [('Bianchi Modular Form %s' % self.bmf_label, self.bmf_url)] if 'Lfunction' in self.urls: self.friends += [('L-function', self.urls['Lfunction'])] else: self.friends += [('L-function not available', "")] self.properties = [('Base field', self.field_name), ('Label', self.class_label), (None, self.graph_link), ('Conductor', '%s' % self.conductor_label)] if self.rk != '?': self.properties += [('Rank', '%s' % self.rk)] else: if self.rk_bnds == 'not recorded': self.properties += [('Rank', '%s' % self.rk_bnds)] else: self.properties += [('Rank bounds', '%s' % self.rk_bnds)] self.bread = [('Elliptic Curves ', url_for(".index")), (self.field_label, self.urls['field']), (self.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.short_label, self.urls['class'])]
def make_object(self, curve, endo, tama, ratpts, is_curve): from lmfdb.genus2_curves.main import url_for_curve_label # all information about the curve, its Jacobian, isogeny class, and endomorphisms goes in the data dictionary # most of the data from the database gets polished/formatted before we put it in the data dictionary data = self.data = {} data['label'] = curve['label'] if is_curve else curve['class'] data['slabel'] = data['label'].split('.') # set attributes common to curves and isogeny classes here data['Lhash'] = curve['Lhash'] data['cond'] = ZZ(curve['cond']) data['cond_factor_latex'] = web_latex(factor(int(data['cond']))) data['analytic_rank'] = ZZ(curve['analytic_rank']) data['st_group'] = curve['st_group'] data['st_group_link'] = st_link_by_name(1,4,data['st_group']) data['st0_group_name'] = st0_group_name(curve['real_geom_end_alg']) data['is_gl2_type'] = curve['is_gl2_type'] data['root_number'] = ZZ(curve['root_number']) data['lfunc_url'] = url_for("l_functions.l_function_genus2_page", cond=data['slabel'][0], x=data['slabel'][1]) data['bad_lfactors'] = literal_eval(curve['bad_lfactors']) data['bad_lfactors_pretty'] = [ (c[0], list_to_factored_poly_otherorder(c[1])) for c in data['bad_lfactors']] if is_curve: # invariants specific to curve data['class'] = curve['class'] data['abs_disc'] = ZZ(curve['disc_key'][3:]) # use disc_key rather than abs_disc (will work when abs_disc > 2^63) data['disc'] = curve['disc_sign'] * curve['abs_disc'] data['min_eqn'] = literal_eval(curve['eqn']) data['min_eqn_display'] = list_to_min_eqn(data['min_eqn']) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['igusa_clebsch'] = [ZZ(a) for a in literal_eval(curve['igusa_clebsch_inv'])] data['igusa'] = [ZZ(a) for a in literal_eval(curve['igusa_inv'])] data['g2'] = [QQ(a) for a in literal_eval(curve['g2_inv'])] data['igusa_clebsch_factor_latex'] = [web_latex(zfactor(i)) for i in data['igusa_clebsch']] data['igusa_factor_latex'] = [ web_latex(zfactor(j)) for j in data['igusa'] ] data['aut_grp_id'] = curve['aut_grp_id'] data['geom_aut_grp_id'] = curve['geom_aut_grp_id'] data['num_rat_wpts'] = ZZ(curve['num_rat_wpts']) data['two_selmer_rank'] = ZZ(curve['two_selmer_rank']) data['has_square_sha'] = "square" if curve['has_square_sha'] else "twice a square" P = curve['non_solvable_places'] if len(P): sz = "except over " sz += ", ".join([QpName(p) for p in P]) last = " and" if len(P) > 2: last = ", and" sz = last.join(sz.rsplit(",",1)) else: sz = "everywhere" data['non_solvable_places'] = sz data['torsion_order'] = curve['torsion_order'] data['torsion_factors'] = [ ZZ(a) for a in literal_eval(curve['torsion_subgroup']) ] if len(data['torsion_factors']) == 0: data['torsion_subgroup'] = '\mathrm{trivial}' else: data['torsion_subgroup'] = ' \\times '.join([ '\Z/{%s}\Z' % n for n in data['torsion_factors'] ]) data['end_ring_base'] = endo['ring_base'] data['end_ring_geom'] = endo['ring_geom'] data['tama'] = '' for i in range(tama.count()): item = tama.next() if item['tamagawa_number'] > 0: tamgwnr = str(item['tamagawa_number']) else: tamgwnr = 'N/A' data['tama'] += tamgwnr + ' (p = ' + str(item['p']) + ')' if (i+1 < tama.count()): data['tama'] += ', ' if ratpts: if len(ratpts['rat_pts']): data['rat_pts'] = ', '.join(web_latex('(' +' : '.join(P) + ')') for P in ratpts['rat_pts']) data['rat_pts_v'] = 2 if ratpts['rat_pts_v'] else 1 # data['mw_rank'] = ratpts['mw_rank'] # data['mw_rank_v'] = ratpts['mw_rank_v'] else: data['rat_pts_v'] = 0 if curve['two_torsion_field'][0]: data['two_torsion_field_knowl'] = nf_display_knowl (curve['two_torsion_field'][0], getDBConnection(), field_pretty(curve['two_torsion_field'][0])) else: t = curve['two_torsion_field'] data['two_torsion_field_knowl'] = """splitting field of \(%s\) with Galois group %s"""%(intlist_to_poly(t[1]),group_display_knowl(t[2][0],t[2][1],getDBConnection())) else: # invariants specific to isogeny class curves_data = g2c_db_curves().find({"class" : curve['class']},{'_id':int(0),'label':int(1),'eqn':int(1),'disc_key':int(1)}).sort([("disc_key", ASCENDING), ("label", ASCENDING)]) if not curves_data: raise KeyError("No curves found in database for isogeny class %s of genus 2 curve %s." %(curve['class'],curve['label'])) data['curves'] = [ {"label" : c['label'], "equation_formatted" : list_to_min_eqn(literal_eval(c['eqn'])), "url": url_for_curve_label(c['label'])} for c in curves_data ] lfunc_data = g2c_db_lfunction_by_hash(curve['Lhash']) if not lfunc_data: raise KeyError("No Lfunction found in database for isogeny class of genus 2 curve %s." %curve['label']) if lfunc_data and lfunc_data.get('euler_factors'): data['good_lfactors'] = [[nth_prime(n+1),lfunc_data['euler_factors'][n]] for n in range(len(lfunc_data['euler_factors'])) if nth_prime(n+1) < 30 and (data['cond'] % nth_prime(n+1))] data['good_lfactors_pretty'] = [ (c[0], list_to_factored_poly_otherorder(c[1])) for c in data['good_lfactors']] # Endomorphism data over QQ: data['gl2_statement_base'] = gl2_statement_base(endo['factorsRR_base'], r'\(\Q\)') data['factorsQQ_base'] = endo['factorsQQ_base'] data['factorsRR_base'] = endo['factorsRR_base'] data['end_statement_base'] = """Endomorphism %s over \(\Q\):<br>""" %("ring" if is_curve else "algebra") + \ end_statement(data['factorsQQ_base'], endo['factorsRR_base'], ring=data['end_ring_base'] if is_curve else None) # Field over which all endomorphisms are defined data['end_field_label'] = endo['fod_label'] data['end_field_poly'] = intlist_to_poly(endo['fod_coeffs']) data['end_field_statement'] = end_field_statement(data['end_field_label'], data['end_field_poly']) # Endomorphism data over QQbar: data['factorsQQ_geom'] = endo['factorsQQ_geom'] data['factorsRR_geom'] = endo['factorsRR_geom'] if data['end_field_label'] != '1.1.1.1': data['gl2_statement_geom'] = gl2_statement_base(data['factorsRR_geom'], r'\(\overline{\Q}\)') data['end_statement_geom'] = """Endomorphism %s over \(\overline{\Q}\):""" %("ring" if is_curve else "algebra") + \ end_statement(data['factorsQQ_geom'], data['factorsRR_geom'], field=r'\overline{\Q}', ring=data['end_ring_geom'] if is_curve else None) data['real_geom_end_alg_name'] = end_alg_name(curve['real_geom_end_alg']) # Endomorphism data over intermediate fields not already treated (only for curves, not necessarily isogeny invariant): if is_curve: data['end_lattice'] = (endo['lattice'])[1:-1] if data['end_lattice']: data['end_lattice_statement'] = end_lattice_statement(data['end_lattice']) # Field over which the Jacobian decomposes (base field if Jacobian is geometrically simple) data['is_simple_geom'] = endo['is_simple_geom'] data['split_field_label'] = endo['spl_fod_label'] data['split_field_poly'] = intlist_to_poly(endo['spl_fod_coeffs']) data['split_field_statement'] = split_field_statement(data['is_simple_geom'], data['split_field_label'], data['split_field_poly']) # Elliptic curve factors for non-simple Jacobians if not data['is_simple_geom']: data['split_coeffs'] = endo['spl_facs_coeffs'] if 'spl_facs_labels' in endo and len(endo['spl_facs_labels']) == len(endo['spl_facs_coeffs']): data['split_labels'] = endo['spl_facs_labels'] data['split_condnorms'] = endo['spl_facs_condnorms'] data['split_statement'] = split_statement(data['split_coeffs'], data.get('split_labels'), data['split_condnorms']) # Properties self.properties = properties = [('Label', data['label'])] if is_curve: self.plot = encode_plot(eqn_list_to_curve_plot(data['min_eqn'], data['rat_pts'].split(',') if 'rat_pts' in data else [])) plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(self.plot) properties += [ (None, plot_link), ('Conductor',str(data['cond'])), ('Discriminant', str(data['disc'])), ] properties += [ ('Sato-Tate group', data['st_group_link']), ('\(\\End(J_{\\overline{\\Q}}) \\otimes \\R\)', '\(%s\)' % data['real_geom_end_alg_name']), ('\(\\overline{\\Q}\)-simple', bool_pretty(data['is_simple_geom'])), ('\(\mathrm{GL}_2\)-type', bool_pretty(data['is_gl2_type'])), ] # Friends self.friends = friends = [('L-function', data['lfunc_url'])] if is_curve: friends.append(('Isogeny class %s.%s' % (data['slabel'][0], data['slabel'][1]), url_for(".by_url_isogeny_class_label", cond=data['slabel'][0], alpha=data['slabel'][1]))) for friend in g2c_db_lfunction_instances().find({'Lhash':data['Lhash']},{'_id':False,'url':True}): if 'url' in friend: add_friend (friends, lfunction_friend_from_url(friend['url'])) if 'urls' in friend: for url in friends['urls']: add_friend (friends, lfunction_friend_from_url(friend['url'])) if 'split_labels' in data: for friend_label in data['split_labels']: if is_curve: add_friend (friends, ("Elliptic curve " + friend_label, url_for_ec(friend_label))) else: add_friend (friends, ("EC isogeny class " + ec_label_class(friend_label), url_for_ec_class(friend_label))) if is_curve: friends.append(('Twists', url_for(".index_Q", g20 = str(data['g2'][0]), g21 = str(data['g2'][1]), g22 = str(data['g2'][2])))) # Breadcrumbs self.bread = bread = [ ('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % data['slabel'][0], url_for(".by_conductor", cond=data['slabel'][0])), ('%s' % data['slabel'][1], url_for(".by_url_isogeny_class_label", cond=data['slabel'][0], alpha=data['slabel'][1])) ] if is_curve: bread += [ ('%s' % data['slabel'][2], url_for(".by_url_isogeny_class_discriminant", cond=data['slabel'][0], alpha=data['slabel'][1], disc=data['slabel'][2])), ('%s' % data['slabel'][3], url_for(".by_url_curve_label", cond=data['slabel'][0], alpha=data['slabel'][1], disc=data['slabel'][2], num=data['slabel'][3])) ] # Title self.title = "Genus 2 " + ("Curve " if is_curve else "Isogeny Class ") + data['label'] # Code snippets (only for curves) if not is_curve: return self.code = code = {} code['show'] = {'sage':'','magma':''} # use default show names code['curve'] = {'sage':'R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R(%s), R(%s))'%(data['min_eqn'][0],data['min_eqn'][1]), 'magma':'R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R!%s, R!%s);'%(data['min_eqn'][0],data['min_eqn'][1])} if data['abs_disc'] % 4096 == 0: ind2 = [a[0] for a in data['bad_lfactors']].index(2) bad2 = data['bad_lfactors'][ind2][1] magma_cond_option = ': ExcFactors:=[*<2,Valuation('+str(data['cond'])+',2),R!'+str(bad2)+'>*]' else: magma_cond_option = '' code['cond'] = {'magma': 'Conductor(LSeries(C%s)); Factorization($1);'% magma_cond_option} code['disc'] = {'magma':'Discriminant(C); Factorization(Integers()!$1);'} code['igusa_clebsch'] = {'sage':'C.igusa_clebsch_invariants(); [factor(a) for a in _]', 'magma':'IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];'} code['igusa'] = {'magma':'IgusaInvariants(C); [Factorization(Integers()!a): a in $1];'} code['g2'] = {'magma':'G2Invariants(C);'} code['aut'] = {'magma':'AutomorphismGroup(C); IdentifyGroup($1);'} code['autQbar'] = {'magma':'AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);'} code['num_rat_wpts'] = {'magma':'#Roots(HyperellipticPolynomials(SimplifiedModel(C)));'} if ratpts: code['rat_pts'] = {'magma': '[' + ','.join(["C![%s,%s,%s]"%(p[0],p[1],p[2]) for p in ratpts['rat_pts']]) + '];' } code['two_selmer'] = {'magma':'TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);'} code['has_square_sha'] = {'magma':'HasSquareSha(Jacobian(C));'} code['locally_solvable'] = {'magma':'f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);'} code['torsion_subgroup'] = {'magma':'TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);'}
def make_E(self): coeffs = self.ainvs # list of 5 lists of d strings self.ainvs = [self.field.parse_NFelt(x) for x in coeffs] self.latex_ainvs = web_latex(self.ainvs) from sage.schemes.elliptic_curves.all import EllipticCurve self.E = E = EllipticCurve(self.ainvs) self.equn = web_latex(E) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = E.conductor() self.cond = web_latex(N) self.cond_norm = web_latex(N.norm()) if N.norm() == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond else: self.fact_cond = web_latex_ideal_fact(N.factor()) self.fact_cond_norm = web_latex(N.norm().factor()) D = self.field.K().ideal(E.discriminant()) self.disc = web_latex(D) self.disc_norm = web_latex(D.norm()) if D.norm() == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc else: self.fact_disc = web_latex_ideal_fact(D.factor()) self.fact_disc_norm = web_latex(D.norm().factor()) # Minimal model? # # All curves in the database should be given # by models which are globally minimal if possible, else # minimal at all but one prime. But we do not rely on this # here, and the display should be correct if either (1) there # exists a global minimal model but this model is not; or (2) # this model is non-minimal at more than one prime. # self.non_min_primes = non_minimal_primes(E) self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = True if not self.is_minimal: self.non_min_prime = ','.join( [web_latex(P) for P in self.non_min_primes]) self.has_minimal_model = has_global_minimal_model(E) if not self.is_minimal: Dmin = minimal_discriminant_ideal(E) self.mindisc = web_latex(Dmin) self.mindisc_norm = web_latex(Dmin.norm()) if Dmin.norm( ) == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc else: self.fact_mindisc = web_latex_ideal_fact(Dmin.factor()) self.fact_mindisc_norm = web_latex(Dmin.norm().factor()) j = E.j_invariant() if j: d = j.denominator() n = d * j # numerator exists for quadratic fields only! g = GCD(list(n)) n1 = n / g self.j = web_latex(n1) if d != 1: if n1 > 1: # self.j = "("+self.j+")\(/\)"+web_latex(d) self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) else: self.j = web_latex(d) if g > 1: if n1 > 1: self.j = web_latex(g) + self.j else: self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work bu take too long (e.g. EllipticCurve/6.6.371293.1/1.1/a/1) # If these are really wanted, they could be precomputed and stored in the db if j.is_zero(): self.fact_j = web_latex(j) else: if self.field.K().degree( ) < 3: #j.numerator_ideal().norm()<1000000000000: try: self.fact_j = web_latex(j.factor()) except (ArithmeticError, ValueError ): # if not all prime ideal factors principal pass # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # The line below will need to change once we have curves over non-quadratic fields # that contain the Hilbert class field of an imaginary quadratic field if self.signature == [0, 1] and ZZ( -self.abs_disc * self.cm).is_square(): self.ST = '<a href="%s">$%s$</a>' % (url_for( 'st.by_label', label='1.2.U(1)'), '\\mathrm{U}(1)') else: self.ST = '<a href="%s">$%s$</a>' % (url_for( 'st.by_label', label='1.2.N(U(1))'), 'N(\\mathrm{U}(1))') else: self.ST = '<a href="%s">$%s$</a>' % (url_for( 'st.by_label', label='1.2.SU(2)'), '\\mathrm{SU}(2)') # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple( self.torsion_structure) torsion_gens = [ E([self.field.parse_NFelt(x) for x in P]) for P in self.torsion_gens ] self.torsion_gens = ",".join([web_latex(P) for P in torsion_gens]) # Rank or bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.rank_bounds) except AttributeError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not available" # Generators try: gens = [ E([self.field.parse_NFelt(x) for x in P]) for P in self.gens ] self.gens = ", ".join([web_latex(P) for P in gens]) if self.rk == "?": self.reg = "not available" else: if gens: self.reg = E.regulator_of_points(gens) else: self.reg = 1 # otherwise we only get 1.00000... except AttributeError: self.gens = "not available" self.reg = "not available" try: if self.rank == 0: self.reg = 1 except AttributeError: pass # Local data self.local_data = [] for p in N.prime_factors(): self.local_info = E.local_data(p, algorithm="generic") self.local_data.append({ 'p': web_latex(p), 'norm': web_latex(p.norm().factor()), 'tamagawa_number': self.local_info.tamagawa_number(), 'kodaira_symbol': web_latex(self.local_info.kodaira_symbol()).replace('$', ''), 'reduction_type': self.local_info.bad_reduction_type(), 'ord_den_j': max(0, -E.j_invariant().valuation(p)), 'ord_mindisc': self.local_info.discriminant_valuation(), 'ord_cond': self.local_info.conductor_valuation() }) # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote( self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) sig = self.signature real_quadratic = sig == [2, 0] totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field_label=self.field_label, jinv=self.jinv))] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] self.friends += [('L-function', self.urls['Lfunction'])] if imag_quadratic: self.friends += [ ('Bianchi Modular Form %s not available' % self.bmf_label, '') ] self.properties = [('Base field', self.field.field_pretty()), ('Label', self.label)] # Plot if E.base_field().signature()[0]: self.plot = encode_plot(EC_nf_plot(E, self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden # ('j-invariant', self.j), ('CM', self.cm_bool) ] if self.base_change: self.properties += [ ('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change])) ] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code()
def make_object(self, curve, endo, is_curve): from lmfdb.genus2_curves.main import url_for_curve_label # all information about the curve, its Jacobian, isogeny class, and endomorphisms goes in the data dictionary # most of the data from the database gets polished/formatted before we put it in the data dictionary data = self.data = {} data['label'] = curve['label'] if is_curve else curve['class'] data['slabel'] = data['label'].split('.') # set attributes common to curves and isogeny classes here data['Lhash'] = curve['Lhash'] data['cond'] = ZZ(curve['cond']) data['cond_factor_latex'] = web_latex(factor(int(data['cond']))) data['analytic_rank'] = ZZ(curve['analytic_rank']) data['st_group'] = curve['st_group'] data['st_group_link'] = st_link_by_name(1, 4, data['st_group']) data['st0_group_name'] = st0_group_name(curve['real_geom_end_alg']) data['is_gl2_type'] = curve['is_gl2_type'] data['root_number'] = ZZ(curve['root_number']) data['lfunc_url'] = url_for("l_functions.l_function_genus2_page", cond=data['slabel'][0], x=data['slabel'][1]) data['bad_lfactors'] = literal_eval(curve['bad_lfactors']) data['bad_lfactors_pretty'] = [(c[0], list_to_factored_poly_otherorder(c[1])) for c in data['bad_lfactors']] if is_curve: # invariants specific to curve data['class'] = curve['class'] data['abs_disc'] = ZZ( curve['disc_key'][3:] ) # use disc_key rather than abs_disc (will work when abs_disc > 2^63) data['disc'] = curve['disc_sign'] * curve['abs_disc'] data['min_eqn'] = literal_eval(curve['eqn']) data['min_eqn_display'] = list_to_min_eqn(data['min_eqn']) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['igusa_clebsch'] = [ ZZ(a) for a in literal_eval(curve['igusa_clebsch_inv']) ] data['igusa'] = [ZZ(a) for a in literal_eval(curve['igusa_inv'])] data['g2'] = [QQ(a) for a in literal_eval(curve['g2_inv'])] data['igusa_clebsch_factor_latex'] = [ web_latex(zfactor(i)) for i in data['igusa_clebsch'] ] data['igusa_factor_latex'] = [ web_latex(zfactor(j)) for j in data['igusa'] ] data['aut_grp_id'] = curve['aut_grp_id'] data['geom_aut_grp_id'] = curve['geom_aut_grp_id'] data['num_rat_wpts'] = ZZ(curve['num_rat_wpts']) data['two_selmer_rank'] = ZZ(curve['two_selmer_rank']) data['has_square_sha'] = "square" if curve[ 'has_square_sha'] else "twice a square" data['locally_solvable'] = "yes" if curve[ 'locally_solvable'] else "no" data['torsion_order'] = curve['torsion_order'] data['torsion_factors'] = [ ZZ(a) for a in literal_eval(curve['torsion_subgroup']) ] if len(data['torsion_factors']) == 0: data['torsion_subgroup'] = '\mathrm{trivial}' else: data['torsion_subgroup'] = ' \\times '.join( ['\Z/{%s}\Z' % n for n in data['torsion_factors']]) data['end_ring_base'] = endo['ring_base'] data['end_ring_geom'] = endo['ring_geom'] else: # invariants specific to isogeny class curves_data = g2c_db_curves().find({ "class": curve['class'] }, { '_id': int(0), 'label': int(1), 'eqn': int(1), 'disc_key': int(1) }).sort([("disc_key", ASCENDING), ("label", ASCENDING)]) if not curves_data: raise KeyError( "No curves found in database for isogeny class %s of genus 2 curve %s." % (curve['class'], curve['label'])) data['curves'] = [{ "label": c['label'], "equation_formatted": list_to_min_eqn(literal_eval(c['eqn'])), "url": url_for_curve_label(c['label']) } for c in curves_data] lfunc_data = g2c_db_lfunction_by_hash(curve['Lhash']) if not lfunc_data: raise KeyError( "No Lfunction found in database for isogeny class of genus 2 curve %s." % curve['label']) if lfunc_data and lfunc_data.get('euler_factors'): data['good_lfactors'] = [ [nth_prime(n + 1), lfunc_data['euler_factors'][n]] for n in range(len(lfunc_data['euler_factors'])) if nth_prime(n + 1) < 30 and (data['cond'] % nth_prime(n + 1)) ] data['good_lfactors_pretty'] = [ (c[0], list_to_factored_poly_otherorder(c[1])) for c in data['good_lfactors'] ] # Endomorphism data over QQ: data['gl2_statement_base'] = gl2_statement_base( endo['factorsRR_base'], r'\(\Q\)') data['factorsQQ_base'] = endo['factorsQQ_base'] data['factorsRR_base'] = endo['factorsRR_base'] data['end_statement_base'] = """Endomorphism %s over \(\Q\):<br>""" %("ring" if is_curve else "algebra") + \ end_statement(data['factorsQQ_base'], endo['factorsRR_base'], ring=data['end_ring_base'] if is_curve else None) # Field over which all endomorphisms are defined data['end_field_label'] = endo['fod_label'] data['end_field_poly'] = intlist_to_poly(endo['fod_coeffs']) data['end_field_statement'] = end_field_statement( data['end_field_label'], data['end_field_poly']) # Endomorphism data over QQbar: data['factorsQQ_geom'] = endo['factorsQQ_geom'] data['factorsRR_geom'] = endo['factorsRR_geom'] if data['end_field_label'] != '1.1.1.1': data['gl2_statement_geom'] = gl2_statement_base( data['factorsRR_geom'], r'\(\overline{\Q}\)') data['end_statement_geom'] = """Endomorphism %s over \(\overline{\Q}\):""" %("ring" if is_curve else "algebra") + \ end_statement(data['factorsQQ_geom'], data['factorsRR_geom'], field=r'\overline{\Q}', ring=data['end_ring_geom'] if is_curve else None) data['real_geom_end_alg_name'] = end_alg_name( curve['real_geom_end_alg']) # Endomorphism data over intermediate fields not already treated (only for curves, not necessarily isogeny invariant): if is_curve: data['end_lattice'] = (endo['lattice'])[1:-1] if data['end_lattice']: data['end_lattice_statement'] = end_lattice_statement( data['end_lattice']) # Field over which the Jacobian decomposes (base field if Jacobian is geometrically simple) data['is_simple_geom'] = endo['is_simple_geom'] data['split_field_label'] = endo['spl_fod_label'] data['split_field_poly'] = intlist_to_poly(endo['spl_fod_coeffs']) data['split_field_statement'] = split_field_statement( data['is_simple_geom'], data['split_field_label'], data['split_field_poly']) # Elliptic curve factors for non-simple Jacobians if not data['is_simple_geom']: data['split_coeffs'] = endo['spl_facs_coeffs'] if 'spl_facs_labels' in endo and len( endo['spl_facs_labels']) == len(endo['spl_facs_coeffs']): data['split_labels'] = endo['spl_facs_labels'] data['split_condnorms'] = endo['spl_facs_condnorms'] data['split_statement'] = split_statement(data['split_coeffs'], data.get('split_labels'), data['split_condnorms']) # Properties self.properties = properties = [('Label', data['label'])] if is_curve: self.plot = encode_plot(eqn_list_to_curve_plot(data['min_eqn'])) plot_link = '<img src="%s" width="200" height="150"/>' % self.plot properties += [ (None, plot_link), ('Conductor', str(data['cond'])), ('Discriminant', str(data['disc'])), ] properties += [ ('Sato-Tate group', data['st_group_link']), ('\(\\End(J_{\\overline{\\Q}}) \\otimes \\R\)', '\(%s\)' % data['real_geom_end_alg_name']), ('\(\\overline{\\Q}\)-simple', bool_pretty(data['is_simple_geom'])), ('\(\mathrm{GL}_2\)-type', bool_pretty(data['is_gl2_type'])), ] # Friends self.friends = friends = [('L-function', data['lfunc_url'])] if is_curve: friends.append(('Isogeny class %s.%s' % (data['slabel'][0], data['slabel'][1]), url_for(".by_url_isogeny_class_label", cond=data['slabel'][0], alpha=data['slabel'][1]))) for friend in g2c_db_lfunction_instances().find( {'Lhash': data['Lhash']}, { '_id': False, 'url': True }): if 'url' in friend: add_friend(friends, lfunction_friend_from_url(friend['url'])) if 'urls' in friend: for url in friends['urls']: add_friend(friends, lfunction_friend_from_url(friend['url'])) if 'split_labels' in data: for friend_label in data['split_labels']: if is_curve: add_friend(friends, ("Elliptic curve " + friend_label, url_for_ec(friend_label))) else: add_friend( friends, ("EC isogeny class " + ec_label_class(friend_label), url_for_ec_class(friend_label))) if is_curve: friends.append(('Twists', url_for(".index_Q", g20=str(data['g2'][0]), g21=str(data['g2'][1]), g22=str(data['g2'][2])))) # Breadcrumbs self.bread = bread = [('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % data['slabel'][0], url_for(".by_conductor", cond=data['slabel'][0])), ('%s' % data['slabel'][1], url_for(".by_url_isogeny_class_label", cond=data['slabel'][0], alpha=data['slabel'][1]))] if is_curve: bread += [('%s' % data['slabel'][2], url_for(".by_url_isogeny_class_discriminant", cond=data['slabel'][0], alpha=data['slabel'][1], disc=data['slabel'][2])), ('%s' % data['slabel'][3], url_for(".by_url_curve_label", cond=data['slabel'][0], alpha=data['slabel'][1], disc=data['slabel'][2], num=data['slabel'][3]))] # Title self.title = "Genus 2 " + ("Curve " if is_curve else "Isogeny Class ") + data['label'] # Code snippets (only for curves) if not is_curve: return self.code = code = {} code['show'] = {'sage': '', 'magma': ''} # use default show names code['curve'] = { 'sage': 'R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R(%s), R(%s))' % (data['min_eqn'][0], data['min_eqn'][1]), 'magma': 'R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R!%s, R!%s);' % (data['min_eqn'][0], data['min_eqn'][1]) } if data['abs_disc'] % 4096 == 0: ind2 = [a[0] for a in data['bad_lfactors']].index(2) bad2 = data['bad_lfactors'][ind2][1] magma_cond_option = ': ExcFactors:=[*<2,Valuation(' + str( data['cond']) + ',2),R!' + str(bad2) + '>*]' else: magma_cond_option = '' code['cond'] = { 'magma': 'Conductor(LSeries(C%s)); Factorization($1);' % magma_cond_option } code['disc'] = { 'magma': 'Discriminant(C); Factorization(Integers()!$1);' } code['igusa_clebsch'] = { 'sage': 'C.igusa_clebsch_invariants(); [factor(a) for a in _]', 'magma': 'IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];' } code['igusa'] = { 'magma': 'IgusaInvariants(C); [Factorization(Integers()!a): a in $1];' } code['g2'] = {'magma': 'G2Invariants(C);'} code['aut'] = {'magma': 'AutomorphismGroup(C); IdentifyGroup($1);'} code['autQbar'] = { 'magma': 'AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);' } code['num_rat_wpts'] = { 'magma': '#Roots(HyperellipticPolynomials(SimplifiedModel(C)));' } code['two_selmer'] = { 'magma': 'TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);' } code['has_square_sha'] = {'magma': 'HasSquareSha(Jacobian(C));'} code['locally_solvable'] = { 'magma': 'f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsLocallyEverywhere(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);' } code['torsion_subgroup'] = { 'magma': 'TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);' }
def make_curve(self): # To start with the data fields of self are just those from the # databases. We reformat these, while computing some further (easy) # data about the curve on the fly. # Initialize data: data = self.data = {} endodata = self.endodata = {} # Polish data from database before putting it into the data dictionary: disc = ZZ(self.disc_sign) * ZZ(self.disc_key[3:]) # to deal with disc_key, uncomment line above and comment line below #disc = ZZ(self.disc_sign) * ZZ(self.abs_disc) data['disc'] = disc data['cond'] = ZZ(self.cond) data['min_eqn'] = self.min_eqn data['min_eqn_display'] = list_to_min_eqn(self.min_eqn) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['cond_factor_latex'] = web_latex(factor(int(self.cond))) data['aut_grp'] = groupid_to_meaningful(self.aut_grp) data['geom_aut_grp'] = groupid_to_meaningful(self.geom_aut_grp) data['igusa_clebsch'] = [ZZ(a) for a in self.igusa_clebsch] data['igusa'] = [ZZ(a) for a in self.igusa] data['g2'] = self.g2inv data['ic_norm'] = data['igusa_clebsch'] data['igusa_norm'] = data['igusa'] # Should we ever want to normalize the invariants further, then # uncomment the following lines: #data['ic_norm'] = normalize_invariants(data['igusa_clebsch'], [2, 4, 6, # 10]) #data['igusa_norm'] = normalize_invariants(data['igusa'], [2, 4, 6, 8, # 10]) data['ic_norm_factor_latex'] = [web_latex(zfactor(i)) for i in data['ic_norm']] data['igusa_norm_factor_latex'] = [ web_latex(zfactor(j)) for j in data['igusa_norm'] ] data['num_rat_wpts'] = ZZ(self.num_rat_wpts) data['two_selmer_rank'] = ZZ(self.two_selmer_rank) data['analytic_rank'] = ZZ(self.analytic_rank) data['has_square_sha'] = "square" if self.has_square_sha else "twice a square" data['locally_solvable'] = "yes" if self.locally_solvable else "no" if len(self.torsion) == 0: data['tor_struct'] = '\mathrm{trivial}' else: tor_struct = [ ZZ(a) for a in self.torsion ] data['tor_struct'] = ' \\times '.join([ '\Z/{%s}\Z' % n for n in tor_struct ]) # Data derived from Sato-Tate group: isogeny_class = g2cdb().isogeny_classes.find_one({'label' : isog_label(self.label)}) st_data = get_st_data(isogeny_class) for key in st_data.keys(): data[key] = st_data[key] # GL_2 statement over the base field endodata['gl2_statement_base'] = \ gl2_statement_base(self.factorsRR_base, r'\(\Q\)') # NOTE: In what follows there is some copying of code and data that is # stupid from the point of view of efficiency but likely better from # that of maintenance. # Endomorphism data over QQ: endodata['factorsQQ_base'] = self.factorsQQ_base endodata['factorsRR_base'] = self.factorsRR_base endodata['ring_base'] = self.ring_base endodata['endo_statement_base'] = \ """Endomorphism ring over \(\Q\):""" + \ endo_statement(endodata['factorsQQ_base'], endodata['factorsRR_base'], endodata['ring_base'], r'') # Field of definition data: endodata['fod_label'] = self.fod_label endodata['fod_poly'] = intlist_to_poly(self.fod_coeffs) endodata['fod_statement'] = fod_statement(endodata['fod_label'], endodata['fod_poly']) # Endomorphism data over QQbar: endodata['factorsQQ_geom'] = self.factorsQQ_geom endodata['factorsRR_geom'] = self.factorsRR_geom endodata['ring_geom'] = self.ring_geom if self.fod_label != '1.1.1.1': endodata['gl2_statement_geom'] = \ gl2_statement_base(self.factorsRR_geom, r'\(\overline{\Q}\)') endodata['endo_statement_geom'] = \ """Endomorphism ring over \(\overline{\Q}\):""" + \ endo_statement(endodata['factorsQQ_geom'], endodata['factorsRR_geom'], endodata['ring_geom'], r'\overline{\Q}') # Full endomorphism lattice minus entries already treated: N = len(self.lattice) endodata['lattice'] = (self.lattice)[1:N - 1] if endodata['lattice']: endodata['lattice_statement_preamble'] = \ lattice_statement_preamble() endodata['lattice_statement'] = \ lattice_statement(endodata['lattice']) # Splitting field description: #endodata['is_simple_base'] = self.is_simple_base endodata['is_simple_geom'] = self.is_simple_geom endodata['spl_fod_label'] = self.spl_fod_label endodata['spl_fod_poly'] = intlist_to_poly(self.spl_fod_coeffs) endodata['spl_fod_statement'] = \ spl_fod_statement(endodata['is_simple_geom'], endodata['spl_fod_label'], endodata['spl_fod_poly']) # Isogeny factors: if not endodata['is_simple_geom']: endodata['spl_facs_coeffs'] = self.spl_facs_coeffs # This could be done non-uniformly as well... later. if len(self.spl_facs_labels) == len(self.spl_facs_coeffs): endodata['spl_facs_labels'] = self.spl_facs_labels else: endodata['spl_facs_labels'] = ['' for coeffs in self.spl_facs_coeffs] endodata['spl_facs_condnorms'] = self.spl_facs_condnorms endodata['spl_statement'] = \ spl_statement(endodata['spl_facs_coeffs'], endodata['spl_facs_labels'], endodata['spl_facs_condnorms']) # Title self.title = "Genus 2 Curve %s" % (self.label) # Lady Gaga box self.plot = encode_plot(eqn_list_to_curve_plot(self.min_eqn)) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [ ('Label', self.label), (None, self.plot_link), ('Conductor','%s' % self.cond), ('Discriminant', '%s' % data['disc']), ('Invariants', '%s </br> %s </br> %s </br> %s' % tuple(data['ic_norm'])), ('Sato-Tate group', data['st_group_href']), ('\(%s\)' % data['real_geom_end_alg_disp'][0], '\(%s\)' % data['real_geom_end_alg_disp'][1]), ('\(\mathrm{GL}_2\)-type','%s' % data['is_gl2_type_name'])] x = self.label.split('.')[1] self.friends = [ ('Isogeny class %s' % isog_label(self.label), url_for(".by_double_iso_label", conductor = self.cond, iso_label = x)), ('L-function', url_for("l_functions.l_function_genus2_page", cond=self.cond,x=x)), ('Twists', url_for(".index_Q", g20 = self.g2inv[0], g21 = self.g2inv[1], g22 = self.g2inv[2])) #('Siegel modular form someday', '.') ] if not endodata['is_simple_geom']: self.friends += [('Elliptic curve %s' % lab,url_for_ec(lab)) for lab in endodata['spl_facs_labels'] if lab != ''] #self.downloads = [('Download all stored data', '.')] # Breadcrumbs iso = self.label.split('.')[1] num = '.'.join(self.label.split('.')[2:4]) self.bread = [ ('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % self.cond, url_for(".by_conductor", conductor=self.cond)), ('%s' % iso, url_for(".by_double_iso_label", conductor=self.cond, iso_label=iso)), ('Genus 2 curve %s' % num, url_for(".by_g2c_label", label=self.label)) ] # Make code that is used on the page: self.make_code_snippets()
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these, construct the # and compute some further (easy) data about it. # # Weierstrass equation data = self.data = {} disc = ZZ(self.disc_sign) * ZZ(self.disc_key[3:]) # to deal with disc_key, uncomment line above and remove line below #disc = ZZ(self.disc_sign) * ZZ(self.abs_disc) data['disc'] = disc data['cond'] = ZZ(self.cond) data['min_eqn'] = list_to_min_eqn(self.min_eqn) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['cond_factor_latex'] = web_latex(factor(int(self.cond))) data['aut_grp'] = groupid_to_meaningful(self.aut_grp) data['geom_aut_grp'] = groupid_to_meaningful(self.geom_aut_grp) data['igusa_clebsch'] = [ZZ(a) for a in self.igusa_clebsch] if len(self.torsion) == 0: data['tor_struct'] = '\mathrm{trivial}' else: tor_struct = [ZZ(a) for a in self.torsion] data['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct]) isogeny_class = db_g2c().isogeny_classes.find_one({'label' : isog_label(self.label)}) for endalgtype in ['end_ring', 'rat_end_alg', 'real_end_alg', 'geom_end_ring', 'rat_geom_end_alg', 'real_geom_end_alg']: if endalgtype in isogeny_class: data[endalgtype + '_name'] = end_alg_name(isogeny_class[endalgtype]) else: data[endalgtype + '_name'] = '' data['geom_end_field'] = isogeny_class['geom_end_field'] if data['geom_end_field'] <> '': data['geom_end_field_name'] = field_pretty(data['geom_end_field']) else: data['geom_end_field_name'] = '' data['st_group_name'] = st_group_name(isogeny_class['st_group']) if isogeny_class['is_gl2_type']: data['is_gl2_type_name'] = 'yes' else: data['is_gl2_type_name'] = 'no' if 'is_simple' in isogeny_class: if isogeny_class['is_simple']: data['is_simple_name'] = 'yes' else: data['is_simple_name'] = 'no' else: data['is_simple_name'] = '?' if 'is_geom_simple' in isogeny_class: if isogeny_class['is_geom_simple']: data['is_geom_simple_name'] = 'yes' else: data['is_geom_simple_name'] = 'no' else: data['is_geom_simple_name'] = '?' x = self.label.split('.')[1] self.friends = [ ('Isogeny class %s' % isog_label(self.label), url_for(".by_double_iso_label", conductor = self.cond, iso_label = x)), ('L-function', url_for("l_functions.l_function_genus2_page", cond=self.cond,x=x)), ('Siegel modular form someday', '.')] self.downloads = [ ('Download Euler factors', '.')] iso = self.label.split('.')[1] num = '.'.join(self.label.split('.')[2:4]) self.plot = encode_plot(eqn_list_to_curve_plot(self.min_eqn)) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.label), (None, self.plot_link), ('Conductor','%s' % self.cond), ('Discriminant', '%s' % data['disc']), ('Invariants', '%s </br> %s </br> %s </br> %s'% tuple(data['igusa_clebsch'])), ('Sato-Tate group', '\(%s\)' % data['st_group_name']), ('\(\mathrm{End}(J_{\overline{\Q}}) \otimes \R\)','\(%s\)' % data['real_geom_end_alg_name']), ('\(\mathrm{GL}_2\)-type','%s' % data['is_gl2_type_name'])] self.title = "Genus 2 Curve %s" % (self.label) self.bread = [ ('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % self.cond, url_for(".by_conductor", conductor=self.cond)), ('%s' % iso, url_for(".by_double_iso_label", conductor=self.cond, iso_label=iso)), ('Genus 2 curve %s' % num, url_for(".by_g2c_label", label=self.label))]
def make_class(self): self.ainvs_str = self.ainvs self.ainvs = [int(a) for a in self.ainvs_str] self.E = EllipticCurve(self.ainvs) self.CM = self.E.has_cm() try: # Extract the isogeny degree matrix from the database size = len(self.isogeny_matrix) from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) except AttributeError: # Failsafe: construct it from scratch self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix() size = self.isogeny_matrix.nrows() # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img # Create a list of the curves in the class from the database self.db_curves = [self.E] self.optimal_flags = [False] * size self.degrees = [0] * size if self.degree: self.degrees[0] = self.degree else: try: self.degrees[0] = self.E.modular_degree() except RuntimeError: pass # Fill in the curves in the class by looking each one up in the db: self.cremona_labels = [self.label] + [0] * (size - 1) if self.number == 1: self.optimal_flags[0] = True for i in range(2, size + 1): Edata = db_ec().find_one({'lmfdb_label': self.lmfdb_iso + str(i)}) Ei = EllipticCurve([int(a) for a in Edata['ainvs']]) self.cremona_labels[i - 1] = Edata['label'] if Edata['number'] == 1: self.optimal_flags[i - 1] = True if 'degree' in Edata: self.degrees[i - 1] = Edata['degree'] else: try: self.degrees[i - 1] = Ei.modular_degree() except RuntimeError: pass self.db_curves.append(Ei) if self.iso == '990h': # this isogeny class is labeled wrong in Cremona's tables self.optimal_flags = [False, False, True, False] self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) N, iso, number = lmfdb_label_regex.match(self.lmfdb_iso).groups() self.newform = web_latex(self.E.q_eigenform(10)) self.newform_label = self.lmfdb_iso.replace('.', '.2') self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=0, label=iso) self.lfunction_link = url_for("l_functions.l_function_ec_page", label=self.lmfdb_iso) self.curves = [[self.lmfdb_iso + str(i + 1), self.cremona_labels[i], str(list(c.ainvs())), c.torsion_order(), self.degrees[i], self.optimal_flags[i]] for i, c in enumerate(self.db_curves)] self.friends = [ ('L-function', self.lfunction_link), ('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso)), ('Symmetric 4th power L-function', url_for("l_functions.l_function_ec_sym_page", power='4', label=self.lmfdb_iso)), ('Modular form ' + self.newform_label, self.newform_link)] self.properties = [('Label', self.lmfdb_iso), (None, self.graph_link), ('Conductor', '\(%s\)' % N), ('CM', '%s' % self.CM), ('Rank', '\(%s\)' % self.rank) ] self.downloads = [('Download coeffients of newform', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=100)), ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))] if self.lmfdb_iso == self.iso: self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso else: self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso) self.bread = [('Elliptic Curves ', url_for(".rational_elliptic_curves")), ('isogeny class %s' % self.lmfdb_iso, ' ')]
def make_class(self): self.CM = self.cm N, iso, number = split_lmfdb_label(self.lmfdb_iso) # Extract the size of the isogeny class from the database ncurves = self.class_size # Create a list of the curves in the class from the database self.curves = [db_ec().find_one({'iso':self.iso, 'lmfdb_number': i+1}) for i in range(ncurves)] # Set optimality flags. The optimal curve is number 1 except # in one case which is labeled differently in the Cremona tables for c in self.curves: c['optimal'] = (c['number']==(3 if self.label == '990h' else 1)) c['ai'] = parse_ainvs(c['xainvs']) c['url'] = url_for(".by_triple_label", conductor=N, iso_label=iso, number=c['lmfdb_number']) from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.newform = web_latex(PowerSeriesRing(QQ, 'q')(self.anlist, 20, check=True)) self.newform_label = newform_label(N,2,1,iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self.lfunction_link = url_for("l_functions.l_function_ec_page", conductor_label = N, isogeny_class_label = iso) self.friends = [('L-function', self.lfunction_link)] if not self.CM: self.CM = "no" if int(N)<=300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor = N, isogeny = iso))] if int(N)<=50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor = N, isogeny = iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.properties = [('Label', self.lmfdb_iso), ('Number of curves', str(ncurves)), ('Conductor', '\(%s\)' % N), ('CM', '%s' % self.CM), ('Rank', '\(%s\)' % self.rank), ('Graph', ''),(None, self.graph_link) ] self.downloads = [('Download coefficients of newform', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=1000)), ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))] if self.lmfdb_iso == self.iso: self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso else: self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, ' ')] self.code = {} self.code['show'] = {'sage':''} # use default show names self.code['class'] = {'sage':'E = EllipticCurve("%s1")\n'%(self.lmfdb_iso) + 'E.isogeny_class()\n'} self.code['curves'] = {'sage':'E.isogeny_class().curves'} self.code['rank'] = {'sage':'E.rank()'} self.code['q_eigenform'] = {'sage':'E.q_eigenform(10)'} self.code['matrix'] = {'sage':'E.isogeny_class().matrix()'} self.code['plot'] = {'sage':'E.isogeny_graph().plot(edge_labels=True)'}
def make_curve(self): data = self.data = {} lmfdb_label = self.lmfdb_label # Some data fields of self are just those from the database. # These only need some reformatting. data['ainvs'] = self.ainvs data['conductor'] = N = self.conductor data['j_invariant'] = QQ(tuple(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_latex'] = web_latex(data['j_invariant']) # retrieve local reduction data from table ec_localdata: self.local_data = local_data = list( db.ec_localdata.search({"lmfdb_label": lmfdb_label})) for ld in local_data: if ld['kodaira_symbol'] <= -14: # Work around bug in Sage's latex ld['kod'] = 'I_{%s}^{*}' % (-ld['kodaira_symbol'] - 4) else: ld['kod'] = latex(KodairaSymbol(ld['kodaira_symbol'])) Nfac = Factorization([(ZZ(ld['prime']), ld['conductor_valuation']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['prime']), ld['discriminant_valuation']) for ld in local_data], unit=ZZ(self.signD)) data['disc_factor'] = latex(Dfac) data['disc'] = D = Dfac.value() data['cond_factor'] = latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) # retrieve data about MW rank, generators, heights and # torsion, leading term of L-function & other BSD data from # table ec_mwbsd: self.make_mwbsd() # latex equation: latexeqn = latex_equation(self.ainvs) data['equation'] = raw_typeset(unlatex(latexeqn), latexeqn) # minimal quadratic twist: data['minq_D'] = minqD = self.min_quad_twist_disc data['minq_label'] = db.ec_curvedata.lucky( {'ainvs': self.min_quad_twist_ainvs}, projection='lmfdb_label' if self.label_type == 'LMFDB' else 'Clabel') data['minq_info'] = '(itself)' if minqD == 1 else '(by {})'.format( minqD) # modular degree: try: data['degree'] = ZZ(self.degree) # convert None to 0 except AttributeError: # if not computed, db has Null and the attribute is missing data['degree'] = 0 # invalid, but will be displayed nicely # coefficients of modular form / L-series: classdata = db.ec_classdata.lookup(self.lmfdb_iso) data['an'] = classdata['anlist'] data['ap'] = classdata['aplist'] # mod-p Galois images: data['galois_data'] = list( db.ec_galrep.search({'lmfdb_label': lmfdb_label})) for gd in data[ 'galois_data']: # remove the prime prefix from each image code gd['image'] = trim_galois_image_code(gd['image']) # CM and Endo ring: data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = r"\(\Z\)" if self.cm: data['cm_ramp'] = [ p for p in ZZ(self.cm).support() if not p in self.nonmax_primes ] data['cm_nramp'] = len(data['cm_ramp']) if data['cm_nramp'] == 1: data['cm_ramp'] = data['cm_ramp'][0] else: data['cm_ramp'] = ", ".join(str(p) for p in data['cm_ramp']) data['cm_sqf'] = ZZ(self.cm).squarefree_part() data['CM'] = r"yes (\(D=%s\))" % data['CMD'] if data['CMD'] % 4 == 0: d4 = ZZ(data['CMD']) // 4 data['EndE'] = r"\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = r"\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = st_link_by_name(1, 2, 'N(U(1))') else: data['ST'] = st_link_by_name(1, 2, 'SU(2)') # Isogeny degrees: cond, iso, num = split_lmfdb_label(lmfdb_label) self.class_deg = classdata['class_deg'] self.one_deg = ZZ(self.class_deg).is_prime() isodegs = [str(d) for d in self.isogeny_degrees if d > 1] if len(isodegs) < 3: data['isogeny_degrees'] = " and ".join(isodegs) else: data['isogeny_degrees'] = " and ".join( [", ".join(isodegs[:-1]), isodegs[-1]]) self.make_twoadic_data() # Optimality # The optimal curve in the class is the curve whose Cremona # label ends in '1' except for '990h' which was labelled # wrongly long ago. This is proved for N up to # OPTIMALITY_BOUND (and when there is only one curve in an # isogeny class, obviously) and expected for all N. # Column 'optimality' is 1 for certainly optimal curves, 0 for # certainly non-optimal curves, and is n>1 if the curve is one # of n in the isogeny class which may be optimal given current # knowledge. # Column "manin_constant' is the correct Manin constant # assuming that the optimal curve in the class is known, or # otherwise if it is the curve with (Cremona) number 1. # The code here allows us to update the display correctly by # changing one line in this file (defining OPTIMALITY_BOUND) # without changing the data. data['optimality_bound'] = OPTIMALITY_BOUND self.cremona_bound = CREMONA_BOUND if N < CREMONA_BOUND: data[ 'manin_constant'] = self.manin_constant # (conditional on data['optimality_known']) else: data['manin_constant'] = 0 # (meaning not available) if N < OPTIMALITY_BOUND: data['optimality_code'] = int( self.Cnumber == (3 if self.Ciso == '990h' else 1)) data['optimality_known'] = True data['manin_known'] = True if self.label_type == 'Cremona': data[ 'optimal_label'] = '990h3' if self.Ciso == '990h' else self.Ciso + '1' else: data[ 'optimal_label'] = '990.i3' if self.lmfdb_iso == '990.i' else self.lmfdb_iso + '1' elif N < CREMONA_BOUND: data['optimality_code'] = self.optimality data['optimality_known'] = (self.optimality < 2) if self.optimality == 1: data['manin_known'] = True data[ 'optimal_label'] = self.Clabel if self.label_type == 'Cremona' else self.lmfdb_label else: if self.Cnumber == 1: data['manin_known'] = False data[ 'optimal_label'] = self.Clabel if self.label_type == 'Cremona' else self.lmfdb_label else: # find curve #1 in this class and its optimailty code: opt_curve = db.ec_curvedata.lucky( { 'Ciso': self.Ciso, 'Cnumber': 1 }, projection=['Clabel', 'lmfdb_label', 'optimality']) data['manin_known'] = (opt_curve['optimality'] == 1) data['optimal_label'] = opt_curve[ 'Clabel' if self.label_type == 'Cremona' else 'lmfdb_label'] else: data['optimality_code'] = None data['optimality_known'] = False data['manin_known'] = False data['optimal_label'] = '' # p-adic data: data['p_adic_primes'] = [ p for i, p in enumerate(prime_range(5, 100)) if (N * data['ap'][i]) % p != 0 ] data['p_adic_data_exists'] = False if data['optimality_code'] == 1: data['p_adic_data_exists'] = db.ec_padic.exists( {'lmfdb_iso': self.lmfdb_iso}) # Iwasawa data (where present) self.make_iwasawa() # Torsion growth data (where present) self.make_torsion_growth() # Newform rawnewform = str(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform'] = raw_typeset( rawnewform, web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))) data['newform_label'] = self.newform_label = ".".join( [str(cond), str(2), 'a', iso]) self.newform_link = url_for("cmf.by_url_newform_label", level=cond, weight=2, char_orbit_label='a', hecke_orbit=iso) self.newform_exists_in_db = db.mf_newforms.label_exists( self.newform_label) self._code = None if self.label_type == 'Cremona': self.class_url = url_for(".by_ec_label", label=self.Ciso) self.class_name = self.Ciso else: self.class_url = url_for(".by_ec_label", label=self.lmfdb_iso) self.class_name = self.lmfdb_iso data['class_name'] = self.class_name data['Cnumber'] = self.Cnumber if N < CREMONA_BOUND else None self.friends = [('Isogeny class ' + self.class_name, self.class_url), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_ec_label", label=data['minq_label'])), ('All twists ', url_for(".rational_elliptic_curves", jinv=data['j_invariant']))] lfun_url = url_for("l_functions.l_function_ec_page", conductor_label=N, isogeny_class_label=iso) origin_url = lfun_url.lstrip('/L/').rstrip('/') if db.lfunc_instances.exists({'url': origin_url}): self.friends += [('L-function', lfun_url)] else: self.friends += [('L-function not available', "")] if not self.cm: if N <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor=N, isogeny=iso))] if N <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor=N, isogeny=iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('q-expansion to text', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('All stored data to text', url_for(".download_EC_all", label=self.lmfdb_label)), ('Code to Magma', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Code to SageMath', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Code to GP', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) self.properties = [ ('Label', self.Clabel if self.label_type == 'Cremona' else self.lmfdb_label), (None, self.plot_link), ('Conductor', prop_int_pretty(data['conductor'])), ('Discriminant', prop_int_pretty(data['disc'])), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', 'unknown' if self.mwbsd['rank'] == '?' else prop_int_pretty(self.mwbsd['rank'])), ('Torsion structure', (r'\(%s\)' % self.mwbsd['tor_struct']) if self.mwbsd['tor_struct'] else 'trivial'), ] if self.label_type == 'Cremona': self.title = "Elliptic curve with Cremona label {} (LMFDB label {})".format( self.Clabel, self.lmfdb_label) elif N < CREMONA_BOUND: self.title = "Elliptic curve with LMFDB label {} (Cremona label {})".format( self.lmfdb_label, self.Clabel) else: self.title = "Elliptic curve with LMFDB label {}".format( self.lmfdb_label) self.bread = [('Elliptic curves', url_for("ecnf.index")), (r'$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num, ' ')]
def make_E(self): coeffs = self.ainvs # list of 5 lists of d strings self.ainvs = [self.field.parse_NFelt(x) for x in coeffs] self.latex_ainvs = web_latex(self.ainvs) from sage.schemes.elliptic_curves.all import EllipticCurve self.E = E = EllipticCurve(self.ainvs) self.equn = web_latex(E) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = E.conductor() self.cond = web_latex(N) self.cond_norm = web_latex(N.norm()) if N.norm()==1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond else: self.fact_cond = web_latex_ideal_fact(N.factor()) self.fact_cond_norm = web_latex(N.norm().factor()) D = self.field.K().ideal(E.discriminant()) self.disc = web_latex(D) self.disc_norm = web_latex(D.norm()) if D.norm()==1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc else: self.fact_disc = web_latex_ideal_fact(D.factor()) self.fact_disc_norm = web_latex(D.norm().factor()) # Minimal model? # # All curves in the database should be given # by models which are globally minimal if possible, else # minimal at all but one prime. But we do not rely on this # here, and the display should be correct if either (1) there # exists a global minimal model but this model is not; or (2) # this model is non-minimal at more than one prime. # self.non_min_primes = non_minimal_primes(E) self.is_minimal = (len(self.non_min_primes)==0) self.has_minimal_model = True if not self.is_minimal: self.non_min_prime = ','.join([web_latex(P) for P in self.non_min_primes]) self.has_minimal_model = has_global_minimal_model(E) if not self.is_minimal: Dmin = minimal_discriminant_ideal(E) self.mindisc = web_latex(Dmin) self.mindisc_norm = web_latex(Dmin.norm()) if Dmin.norm()==1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc else: self.fact_mindisc = web_latex_ideal_fact(Dmin.factor()) self.fact_mindisc_norm = web_latex(Dmin.norm().factor()) j = E.j_invariant() if j: d = j.denominator() n = d*j # numerator exists for quadratic fields only! g = GCD(list(n)) n1 = n/g self.j = web_latex(n1) if d!=1: if n1>1: #self.j = "("+self.j+")\(/\)"+web_latex(d) self.j = web_latex(r"\frac{%s}{%s}" % (self.j,d)) else: self.j = web_latex(d) if g>1: if n1>1: self.j = web_latex(g) + self.j else: self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None if j.is_zero(): self.fact_j = web_latex(j) else: try: self.fact_j = web_latex(j.factor()) except (ArithmeticError,ValueError): # if not all prime ideal factors principal pass # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.cm_bool = "yes (\(%s\))" % self.cm if self.cm%4==0: d4 = ZZ(self.cm)//4 self.End = "\(\Z[\sqrt{%s}]\)"%(d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr==0: self.tor_struct_pretty = "Trivial" if self.tr==1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr==2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple(self.torsion_structure) torsion_gens = [E([self.field.parse_NFelt(x) for x in P]) for P in self.torsion_gens] self.torsion_gens = ",".join([web_latex(P) for P in torsion_gens]) # Rank etc try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "not recorded" # if rank in self: # self.r = web_latex(self.rank) # Local data self.local_data = [] for p in N.prime_factors(): self.local_info = E.local_data(p, algorithm="generic") self.local_data.append({'p': web_latex(p), 'norm': web_latex(p.norm().factor()), 'tamagawa_number': self.local_info.tamagawa_number(), 'kodaira_symbol': web_latex(self.local_info.kodaira_symbol()).replace('$', ''), 'reduction_type': self.local_info.bad_reduction_type(), 'ord_den_j': max(0,-E.j_invariant().valuation(p)), 'ord_mindisc': self.local_info.discriminant_valuation() }) # URLs of self and related objects: self.urls = {} self.urls['curve'] = url_for(".show_ecnf", nf = self.field_label, conductor_label=self.conductor_label, class_label = self.iso_label, number = self.number) self.urls['class'] = url_for(".show_ecnf_isoclass", nf = self.field_label, conductor_label=self.conductor_label, class_label = self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf = self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) if self.field.is_real_quadratic(): self.hmf_label = "-".join([self.field.label,self.conductor_label,self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) if self.field.is_imag_quadratic(): self.bmf_label = "-".join([self.field.label,self.conductor_label,self.iso_label]) self.friends = [] self.friends += [('Isogeny class '+self.short_class_label, self.urls['class'])] self.friends += [('Twists',url_for('ecnf.index',field_label=self.field_label,jinv=self.jinv))] if self.field.is_real_quadratic(): self.friends += [('Hilbert Modular Form '+self.hmf_label, self.urls['hmf'])] if self.field.is_imag_quadratic(): self.friends += [('Bianchi Modular Form %s not yet available' % self.bmf_label, '')] self.properties = [ ('Base field', self.field.field_pretty()), ('Label' , self.label)] # Plot if E.base_field().signature()[0]: self.plot = encode_plot(EC_nf_plot(E,self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [ ('Conductor' , self.cond), ('Conductor norm' , self.cond_norm), ('j-invariant' , self.j), ('CM' , self.cm_bool)] if self.base_change: self.properties += [('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change]))] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Q-curve' , self.qc)] self.properties += [ ('Torsion order' , self.ntors), ('Rank' , self.rk), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0 , url_for("ec.by_ec_label", label=E0))]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these. # Old version: required constructing the actual elliptic curve # E, and computing some further data about it. # New version (May 2016): extra data fields now in the # database so we do not have to construct the curve or do any # computation with it on the fly. As a failsafe the old way # is still included. data = self.data = {} data['ainvs'] = [ZZ(ai) for ai in self.ainvs] data['conductor'] = N = ZZ(self.conductor) data['j_invariant'] = QQ(str(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) # extract data about MW rank, generators, heights and torsion: self.make_mw() # get more data from the database entry data['equation'] = self.equation local_data = self.local_data D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data]) for ld in local_data: ld['kod'] = ld['kod'].replace("\\\\", "\\") data['disc'] = D Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD)) data['minq_D'] = minqD = self.min_quad_twist['disc'] data['minq_label'] = self.min_quad_twist[ 'lmfdb_label'] if self.label_type == 'LMFDB' else self.min_quad_twist[ 'label'] data['minq_info'] = '(itself)' if minqD == 1 else '(by {})'.format( minqD) if self.degree is None: data['degree'] = 0 # invalid, but will be displayed nicely else: data['degree'] = self.degree try: data['an'] = self.anlist data['ap'] = self.aplist except AttributeError: r = db.ec_curves.lucky({'lmfdb_iso': self.lmfdb_iso, 'number': 1}) data['an'] = r['anlist'] data['ap'] = r['aplist'] data['disc_factor'] = latex(Dfac) data['cond_factor'] = latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) data['galois_images'] = [ trim_galois_image_code(s) for s in self.mod_p_images ] data['non_maximal_primes'] = self.non_maximal_primes data['galois_data'] = [{ 'p': p, 'image': im } for p, im in zip(data['non_maximal_primes'], data['galois_images'])] data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['cm_ramp'] = [ p for p in ZZ(self.cm).support() if not p in self.non_maximal_primes ] data['cm_nramp'] = len(data['cm_ramp']) if data['cm_nramp'] == 1: data['cm_ramp'] = data['cm_ramp'][0] else: data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']]) data['cm_sqf'] = ZZ(self.cm).squarefree_part() data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD'] % 4 == 0: d4 = ZZ(data['CMD']) // 4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = st_link_by_name(1, 2, 'N(U(1))') else: data['ST'] = st_link_by_name(1, 2, 'SU(2)') data['p_adic_primes'] = [ p for i, p in enumerate(prime_range(5, 100)) if (N * data['ap'][i]) % p != 0 ] cond, iso, num = split_lmfdb_label(self.lmfdb_label) self.one_deg = ZZ(self.class_deg).is_prime() isodegs = [str(d) for d in self.isogeny_degrees if d > 1] if len(isodegs) < 3: data['isogeny_degrees'] = " and ".join(isodegs) else: data['isogeny_degrees'] = " and ".join( [", ".join(isodegs[:-1]), isodegs[-1]]) if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join( [latex(Matrix(2, 2, M)) for M in self.twoadic_gens]) data[ 'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & other BSD data self.make_bsd() # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago): this is proved for N up to # OPTIMALITY_BOUND (and when there is only one curve in an # isogeny class, obviously) and expected for all N. # Column 'optimality' is 1 for certainly optimal curves, 0 for # certainly non-optimal curves, and is n>1 if the curve is one # of n in the isogeny class which may be optimal given current # knowledge. # Column "manin_constant' is the correct Manin constant # assuming that the optimal curve in the class is known, or # otherwise if it is the curve with (Cremona) number 1. # The code here allows us to update the display correctly by # changing one line in this file (defining OPTIMALITY_BOUND) # without changing the data. data['optimality_bound'] = OPTIMALITY_BOUND data[ 'manin_constant'] = self.manin_constant # (conditional on data['optimality_known']) if N < OPTIMALITY_BOUND: data['optimality_code'] = int( self.number == (3 if self.iso == '990h' else 1)) data['optimality_known'] = True data['manin_known'] = True if self.label_type == 'Cremona': data[ 'optimal_label'] = '990h3' if self.iso == '990h' else self.iso + '1' else: data[ 'optimal_label'] = '990.i3' if self.lmfdb_iso == '990.i' else self.lmfdb_iso + '1' else: data['optimality_code'] = self.optimality data['optimality_known'] = (self.optimality < 2) if self.optimality == 1: data['manin_known'] = True data[ 'optimal_label'] = self.label if self.label_type == 'Cremona' else self.lmfdb_label else: if self.number == 1: data['manin_known'] = False data[ 'optimal_label'] = self.label if self.label_type == 'Cremona' else self.lmfdb_label else: # find curve #1 in this class and its optimailty code: opt_curve = db.ec_curves.lucky( { 'iso': self.iso, 'number': 1 }, projection=['label', 'lmfdb_label', 'optimality']) data['manin_known'] = (opt_curve['optimality'] == 1) data['optimal_label'] = opt_curve[ 'label' if self.label_type == 'Cremona' else 'lmfdb_label'] data['p_adic_data_exists'] = False if data['optimality_code'] == 1: data['p_adic_data_exists'] = db.ec_padic.exists( {'lmfdb_iso': self.lmfdb_iso}) # Iwasawa data (where present) self.make_iwasawa() # Torsion growth data (where present) self.make_torsion_growth() data['newform'] = web_latex( PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform_label'] = self.newform_label = ".".join( [str(cond), str(2), 'a', iso]) self.newform_link = url_for("cmf.by_url_newform_label", level=cond, weight=2, char_orbit_label='a', hecke_orbit=iso) self.newform_exists_in_db = db.mf_newforms.label_exists( self.newform_label) self._code = None if self.label_type == 'Cremona': self.class_url = url_for(".by_ec_label", label=self.iso) self.class_name = self.iso else: self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.class_name = self.lmfdb_iso data['class_name'] = self.class_name data['number'] = self.number self.friends = [('Isogeny class ' + self.class_name, self.class_url), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_ec_label", label=data['minq_label'])), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv))] lfun_url = url_for("l_functions.l_function_ec_page", conductor_label=N, isogeny_class_label=iso) origin_url = lfun_url.lstrip('/L/').rstrip('/') if db.lfunc_instances.exists({'url': origin_url}): self.friends += [('L-function', lfun_url)] else: self.friends += [('L-function not available', "")] if not self.cm: if N <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor=N, isogeny=iso))] if N <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor=N, isogeny=iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('q-expansion to text', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('All stored data to text', url_for(".download_EC_all", label=self.lmfdb_label)), ('Code to Magma', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Code to SageMath', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Code to GP', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) self.properties = [ ('Label', self.label if self.label_type == 'Cremona' else self.lmfdb_label), (None, self.plot_link), ('Conductor', '%s' % data['conductor']), ('Discriminant', '%s' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '%s' % self.mw['rank']), ('Torsion Structure', '\(%s\)' % self.mw['tor_struct']) ] if self.label_type == 'Cremona': self.title = "Elliptic Curve with Cremona label {} (LMFDB label {})".format( self.label, self.lmfdb_label) else: self.title = "Elliptic Curve with LMFDB label {} (Cremona label {})".format( self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num, ' ')]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these. # Old version: required constructing the actual elliptic curve # E, and computing some further data about it. # New version (May 2016): extra data fields now in the # database so we do not have to construct the curve or do any # computation with it on the fly. As a failsafe the old way # is still included. data = self.data = {} try: data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')] except AttributeError: data['ainvs'] = [int(ai) for ai in self.ainvs] data['conductor'] = N = ZZ(self.conductor) data['j_invariant'] = QQ(str(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) mw = self.mw = {} mw['rank'] = self.rank mw['int_points'] = '' if self.xintcoords: a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']] def lift_x(x): f = ((x + a2) * x + a4) * x + a6 b = (a1 * x + a3) d = (b * b + 4 * f).sqrt() return (x, (-b + d) / 2) mw['int_points'] = ', '.join( web_latex(lift_x(x)) for x in self.xintcoords) mw['generators'] = '' mw['heights'] = [] if self.gens: mw['generators'] = [ web_latex(tuple(P)) for P in parse_points(self.gens) ] mw['tor_order'] = self.torsion tor_struct = [int(c) for c in self.torsion_structure] if mw['tor_order'] == 1: mw['tor_struct'] = '\mathrm{Trivial}' mw['tor_gens'] = '' else: mw['tor_struct'] = ' \\times '.join( ['\Z/{%s}\Z' % n for n in tor_struct]) mw['tor_gens'] = ', '.join( web_latex(tuple(P)) for P in parse_points(self.torsion_generators)) # try to get all the data we need from the database entry (now in self) try: data['equation'] = self.equation local_data = self.local_data D = self.signD * prod( [ld['p']**ld['ord_disc'] for ld in local_data]) data['disc'] = D Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD)) data['minq_D'] = minqD = self.min_quad_twist['disc'] minq_label = self.min_quad_twist['label'] data['minq_label'] = db_ec().find_one( {'label': minq_label}, ['lmfdb_label'])['lmfdb_label'] data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD try: data['degree'] = self.degree except AttributeError: data['degree'] = 0 # invalid, but will be displayed nicely mw['heights'] = self.heights if self.number == 1: data['an'] = self.anlist data['ap'] = self.aplist else: r = db_ec().find_one({ 'lmfdb_iso': self.lmfdb_iso, 'number': 1 }, ['anlist', 'aplist']) data['an'] = r['anlist'] data['ap'] = r['aplist'] # otherwise fall back to computing it from the curve except AttributeError: print("Falling back to constructing E") self.E = EllipticCurve(data['ainvs']) data['equation'] = web_latex(self.E) data['disc'] = D = self.E.discriminant() Nfac = N.factor() Dfac = D.factor() bad_primes = [p for p, e in Nfac] try: data['degree'] = self.degree except AttributeError: try: data['degree'] = self.E.modular_degree() except RuntimeError: data['degree'] = 0 # invalid, but will be displayed nicely minq, minqD = self.E.minimal_quadratic_twist() data['minq_D'] = minqD if minqD == 1: data['minq_label'] = self.lmfdb_label data['minq_info'] = '(itself)' else: # This relies on the minimal twist being in the # database, which is true when the database only # contains the Cremona database. It would be a good # idea if, when the database is extended, we ensured # that for any curve included, all twists of smaller # conductor are also included. minq_ainvs = [str(c) for c in minq.ainvs()] data['minq_label'] = db_ec().find_one( { 'jinv': str(self.E.j_invariant()), 'ainvs': minq_ainvs }, ['lmfdb_label'])['lmfdb_label'] data['minq_info'] = '(by %s)' % minqD if self.gens: self.generators = [self.E(g) for g in parse_points(self.gens)] mw['heights'] = [P.height() for P in self.generators] data['an'] = self.E.anlist(20, python_ints=True) data['ap'] = self.E.aplist(100, python_ints=True) self.local_data = local_data = [] for p in bad_primes: ld = self.E.local_data(p, algorithm="generic") local_data_p = {} local_data_p['p'] = p local_data_p['cp'] = ld.tamagawa_number() local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace( '$', '') local_data_p['red'] = ld.bad_reduction_type() rootno = -ld.bad_reduction_type() if rootno == 0: rootno = self.E.root_number(p) local_data_p['rootno'] = rootno local_data_p['ord_cond'] = ld.conductor_valuation() local_data_p['ord_disc'] = ld.discriminant_valuation() local_data_p['ord_den_j'] = max( 0, -self.E.j_invariant().valuation(p)) local_data.append(local_data_p) # If we got the data from the database, the root numbers may # not have been stored there, so we have to compute them. If # there are additive primes this means constructing the curve. for ld in self.local_data: if not 'rootno' in ld: rootno = -ld['red'] if rootno == 0: try: E = self.E except AttributeError: self.E = E = EllipticCurve(data['ainvs']) rootno = E.root_number(ld['p']) ld['rootno'] = rootno minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) data['disc_factor'] = latex(Dfac) data['cond_factor'] = latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD'] % 4 == 0: d4 = ZZ(data['CMD']) // 4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = st_link_by_name(1, 2, 'N(U(1))') else: data['ST'] = st_link_by_name(1, 2, 'SU(2)') data['p_adic_primes'] = [ p for i, p in enumerate(prime_range(5, 100)) if (N * data['ap'][i]) % p != 0 ] try: data['galois_images'] = [ trim_galois_image_code(s) for s in self.galois_images ] data['non_surjective_primes'] = self.non_surjective_primes except AttributeError: #print "No Galois image data" data['galois_images'] = [] data['non_surjective_primes'] = [] data['galois_data'] = [{ 'p': p, 'image': im } for p, im in zip(data['non_surjective_primes'], data['galois_images'])] cond, iso, num = split_lmfdb_label(self.lmfdb_label) self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso}) isodegs = [str(d) for d in self.isogeny_degrees if d > 1] if len(isodegs) < 3: data['isogeny_degrees'] = " and ".join(isodegs) else: data['isogeny_degrees'] = " and ".join( [", ".join(isodegs[:-1]), isodegs[-1]]) if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join( [latex(Matrix(2, 2, M)) for M in self.twoadic_gens]) data[ 'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & BSD data bsd = self.bsd = {} r = self.rank if r >= 2: bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r) elif r: bsd['lder_name'] = "L'(E,1)" else: bsd['lder_name'] = "L(E,1)" bsd['reg'] = self.regulator bsd['omega'] = self.real_period bsd['sha'] = int(0.1 + self.sha_an) bsd['lder'] = self.special_value # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = (padic_db().find({ 'lmfdb_iso': self.lmfdb_iso }).count()) > 0 tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data] cp_fac = [cp.factor() for cp in tamagawa_numbers] cp_fac = [ latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')' for cp in cp_fac ] bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac) bsd['tamagawa_product'] = prod(tamagawa_numbers) data['newform'] = web_latex( PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform_label'] = self.newform_label = newform_label( cond, 2, 1, iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self._code = None self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label))] if not self.cm: if N <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))] if N <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)), ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Download Sage code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % mw['rank']), ('Torsion Structure', '\(%s\)' % mw['tor_struct'])] self.title = "Elliptic Curve %s (Cremona label %s)" % ( self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num, ' ')]
def make_class(self): # Create a list of the curves in the class from the database self.db_curves = [c for c in db_ec().find( {'field_label': self.field_label, 'conductor_label': self.conductor_label, 'iso_label': self.iso_label}).sort('number')] size = len(self.db_curves) # Extract the isogeny degree matrix from the database if possible, else create it if hasattr(self, 'isogeny_matrix'): from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) else: self.isogeny_matrix = make_iso_matrix(self.db_curves) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) self.field = field_pretty(self.field_label) self.field_knowl = nf_display_knowl(self.field_label, lmfdb.base.getDBConnection(), self.field) def curve_url(c): return url_for(".show_ecnf", nf=c['field_label'], conductor_label=c['conductor_label'], class_label=c['iso_label'], number=c['number']) self.curves = [[c['short_label'], curve_url(c), web_ainvs(self.field_label,c['ainvs'])] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.field_label) real_quadratic = self.signature == [2,0] imag_quadratic = self.signature == [0,1] if real_quadratic: self.hmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field_label, label=self.hmf_label) if imag_quadratic: self.bmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.friends = [] if real_quadratic: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: self.friends += [('Bianchi Modular Form %s not yet available' % self.bmf_label, '')] self.properties = [('Base field', self.field), ('Label', self.class_label), (None, self.graph_link), ('Conductor', '%s' % self.conductor_label) ] self.bread = [('Elliptic Curves ', url_for(".index")), (self.field_label, self.urls['field']), (self.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.short_label, self.urls['class'])]
def make_object(self, curve, endo, tama, ratpts, is_curve): from lmfdb.genus2_curves.main import url_for_curve_label # all information about the curve, its Jacobian, isogeny class, and endomorphisms goes in the data dictionary # most of the data from the database gets polished/formatted before we put it in the data dictionary data = self.data = {} data['label'] = curve['label'] if is_curve else curve['class'] data['slabel'] = data['label'].split('.') # set attributes common to curves and isogeny classes here data['Lhash'] = str(curve['Lhash']) data['cond'] = ZZ(curve['cond']) data['cond_factor_latex'] = web_latex(factor(int( data['cond']))).replace(r"-1 \cdot", "-") data['analytic_rank'] = ZZ(curve['analytic_rank']) data['mw_rank'] = ZZ(0) if curve.get('mw_rank') is None else ZZ( curve['mw_rank']) # 0 will be marked as a lower bound data['mw_rank_proved'] = curve['mw_rank_proved'] data['analytic_rank_proved'] = curve['analytic_rank_proved'] data['hasse_weil_proved'] = curve['hasse_weil_proved'] data['st_group'] = curve['st_group'] data['st_group_link'] = st_link_by_name(1, 4, data['st_group']) data['st0_group_name'] = st0_group_name(curve['real_geom_end_alg']) data['is_gl2_type'] = curve['is_gl2_type'] data['root_number'] = ZZ(curve['root_number']) data['lfunc_url'] = url_for("l_functions.l_function_genus2_page", cond=data['slabel'][0], x=data['slabel'][1]) data['bad_lfactors'] = literal_eval(curve['bad_lfactors']) data['bad_lfactors_pretty'] = [(c[0], list_to_factored_poly_otherorder(c[1])) for c in data['bad_lfactors']] if is_curve: # invariants specific to curve data['class'] = curve['class'] data['abs_disc'] = ZZ(curve['abs_disc']) data['disc'] = curve['disc_sign'] * data['abs_disc'] data['min_eqn'] = literal_eval(curve['eqn']) data['min_eqn_display'] = min_eqns_pretty(data['min_eqn']) data['disc_factor_latex'] = web_latex(factor( data['disc'])).replace(r"-1 \cdot", "-") data['igusa_clebsch'] = [ ZZ(a) for a in literal_eval(curve['igusa_clebsch_inv']) ] data['igusa'] = [ZZ(a) for a in literal_eval(curve['igusa_inv'])] data['g2'] = [QQ(a) for a in literal_eval(curve['g2_inv'])] data['igusa_clebsch_factor_latex'] = [ web_latex(zfactor(i)).replace(r"-1 \cdot", "-") for i in data['igusa_clebsch'] ] data['igusa_factor_latex'] = [ web_latex(zfactor(j)).replace(r"-1 \cdot", "-") for j in data['igusa'] ] data['aut_grp'] = small_group_label_display_knowl( '%d.%d' % tuple(literal_eval(curve['aut_grp_id']))) data['geom_aut_grp'] = small_group_label_display_knowl( '%d.%d' % tuple(literal_eval(curve['geom_aut_grp_id']))) data['num_rat_wpts'] = ZZ(curve['num_rat_wpts']) data['has_square_sha'] = "square" if curve[ 'has_square_sha'] else "twice a square" P = curve['non_solvable_places'] if len(P): sz = "except over " sz += ", ".join([QpName(p) for p in P]) last = " and" if len(P) > 2: last = ", and" sz = last.join(sz.rsplit(",", 1)) else: sz = "everywhere" data['non_solvable_places'] = sz data['two_selmer_rank'] = ZZ(curve['two_selmer_rank']) data['torsion_order'] = curve['torsion_order'] data['end_ring_base'] = endo['ring_base'] data['end_ring_geom'] = endo['ring_geom'] data['real_period'] = decimal_pretty(str(curve['real_period'])) data['regulator'] = decimal_pretty( str(curve['regulator'] )) if curve['regulator'] > -0.5 else 'unknown' if data['mw_rank'] == 0 and data['mw_rank_proved']: data['regulator'] = '1' # display an exact 1 when we know this data['tamagawa_product'] = ZZ( curve['tamagawa_product']) if curve.get( 'tamagawa_product') else 0 data['analytic_sha'] = ZZ( curve['analytic_sha']) if curve.get('analytic_sha') else 0 data['leading_coeff'] = decimal_pretty( str(curve['leading_coeff'] )) if curve['leading_coeff'] else 'unknown' data['rat_pts'] = ratpts['rat_pts'] data['rat_pts_v'] = ratpts['rat_pts_v'] data['rat_pts_table'] = ratpts_table(ratpts['rat_pts'], ratpts['rat_pts_v']) data['mw_gens_v'] = ratpts['mw_gens_v'] lower = len([n for n in ratpts['mw_invs'] if n == 0]) upper = data['analytic_rank'] invs = ratpts[ 'mw_invs'] if data['mw_gens_v'] or lower >= upper else [ 0 for n in range(upper - lower) ] + ratpts['mw_invs'] if len(invs) == 0: data['mw_group'] = 'trivial' else: data['mw_group'] = r'\(' + r' \times '.join([ (r'\Z' if n == 0 else r'\Z/{%s}\Z' % n) for n in invs ]) + r'\)' if lower >= upper: data['mw_gens_table'] = mw_gens_table(ratpts['mw_invs'], ratpts['mw_gens'], ratpts['mw_heights'], ratpts['rat_pts']) if curve['two_torsion_field'][0]: data['two_torsion_field_knowl'] = nf_display_knowl( curve['two_torsion_field'][0], field_pretty(curve['two_torsion_field'][0])) else: t = curve['two_torsion_field'] data[ 'two_torsion_field_knowl'] = r"splitting field of \(%s\) with Galois group %s" % ( intlist_to_poly( t[1]), group_display_knowl(t[2][0], t[2][1])) tamalist = [[item['p'], item['tamagawa_number']] for item in tama] data['local_table'] = local_table(data['abs_disc'], data['cond'], tamalist, data['bad_lfactors_pretty']) else: # invariants specific to isogeny class curves_data = list( db.g2c_curves.search({"class": curve['class']}, ['label', 'eqn'])) if not curves_data: raise KeyError( "No curves found in database for isogeny class %s of genus 2 curve %s." % (curve['class'], curve['label'])) data['curves'] = [{ "label": c['label'], "equation_formatted": min_eqn_pretty(literal_eval(c['eqn'])), "url": url_for_curve_label(c['label']) } for c in curves_data] lfunc_data = db.lfunc_lfunctions.lucky( {'Lhash': str(curve['Lhash'])}) if not lfunc_data: raise KeyError( "No Lfunction found in database for isogeny class of genus 2 curve %s." % curve['label']) if lfunc_data and lfunc_data.get('euler_factors'): data['good_lfactors'] = [ [nth_prime(n + 1), lfunc_data['euler_factors'][n]] for n in range(len(lfunc_data['euler_factors'])) if nth_prime(n + 1) < 30 and (data['cond'] % nth_prime(n + 1)) ] data['good_lfactors_pretty'] = [ (c[0], list_to_factored_poly_otherorder(c[1])) for c in data['good_lfactors'] ] # Endomorphism data over QQ: data['gl2_statement_base'] = gl2_statement_base( endo['factorsRR_base'], r'\(\Q\)') data['factorsQQ_base'] = endo['factorsQQ_base'] data['factorsRR_base'] = endo['factorsRR_base'] data['end_statement_base'] = ( r"Endomorphism %s over \(\Q\):<br>" % ("ring" if is_curve else "algebra") + end_statement(data['factorsQQ_base'], endo['factorsRR_base'], ring=data['end_ring_base'] if is_curve else None)) # Field over which all endomorphisms are defined data['end_field_label'] = endo['fod_label'] data['end_field_poly'] = intlist_to_poly(endo['fod_coeffs']) data['end_field_statement'] = end_field_statement( data['end_field_label'], data['end_field_poly']) # Endomorphism data over QQbar: data['factorsQQ_geom'] = endo['factorsQQ_geom'] data['factorsRR_geom'] = endo['factorsRR_geom'] if data['end_field_label'] != '1.1.1.1': data['gl2_statement_geom'] = gl2_statement_base( data['factorsRR_geom'], r'\(\overline{\Q}\)') data['end_statement_geom'] = ( r"Endomorphism %s over \(\overline{\Q}\):" % ("ring" if is_curve else "algebra") + end_statement( data['factorsQQ_geom'], data['factorsRR_geom'], field=r'\overline{\Q}', ring=data['end_ring_geom'] if is_curve else None)) data['real_geom_end_alg_name'] = real_geom_end_alg_name( curve['real_geom_end_alg']) data['geom_end_alg_name'] = geom_end_alg_name(curve['geom_end_alg']) # Endomorphism data over intermediate fields not already treated (only for curves, not necessarily isogeny invariant): if is_curve: data['end_lattice'] = (endo['lattice'])[1:-1] if data['end_lattice']: data['end_lattice_statement'] = end_lattice_statement( data['end_lattice']) # Field over which the Jacobian decomposes (base field if Jacobian is geometrically simple) data['is_simple_geom'] = endo['is_simple_geom'] data['split_field_label'] = endo['spl_fod_label'] data['split_field_poly'] = intlist_to_poly(endo['spl_fod_coeffs']) data['split_field_statement'] = split_field_statement( data['is_simple_geom'], data['split_field_label'], data['split_field_poly']) # Elliptic curve factors for non-simple Jacobians if not data['is_simple_geom']: data['split_coeffs'] = endo['spl_facs_coeffs'] if 'spl_facs_labels' in endo and len( endo['spl_facs_labels']) == len(endo['spl_facs_coeffs']): data['split_labels'] = endo['spl_facs_labels'] data['split_condnorms'] = endo['spl_facs_condnorms'] data['split_statement'] = split_statement(data['split_coeffs'], data.get('split_labels'), data['split_condnorms']) # Properties self.properties = properties = [('Label', data['label'])] if is_curve: plot_from_db = db.g2c_plots.lucky({"label": curve['label']}) if (plot_from_db is None): self.plot = encode_plot( eqn_list_to_curve_plot( data['min_eqn'], ratpts['rat_pts'] if ratpts else [])) else: self.plot = plot_from_db['plot'] plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format( self.plot) properties += [ (None, plot_link), ('Conductor', str(data['cond'])), ('Discriminant', str(data['disc'])), ] if data['mw_rank_proved']: properties += [('Mordell-Weil group', data['mw_group'])] properties += [ ('Sato-Tate group', data['st_group_link']), (r'\(\End(J_{\overline{\Q}}) \otimes \R\)', r'\(%s\)' % data['real_geom_end_alg_name']), (r'\(\End(J_{\overline{\Q}}) \otimes \Q\)', r'\(%s\)' % data['geom_end_alg_name']), (r'\(\overline{\Q}\)-simple', bool_pretty(data['is_simple_geom'])), (r'\(\mathrm{GL}_2\)-type', bool_pretty(data['is_gl2_type'])), ] # Friends self.friends = friends = [] if is_curve: friends.append(('Isogeny class %s.%s' % (data['slabel'][0], data['slabel'][1]), url_for(".by_url_isogeny_class_label", cond=data['slabel'][0], alpha=data['slabel'][1]))) # first deal with EC ecs = [] if 'split_labels' in data: for friend_label in data['split_labels']: if is_curve: ecs.append(("Elliptic curve " + friend_label, url_for_ec(friend_label))) else: ecs.append( ("Isogeny class " + ec_label_class(friend_label), url_for_ec_class(friend_label))) ecs.sort(key=lambda x: key_for_numerically_sort(x[0])) # then again EC from lfun instances = [] for elt in db.lfunc_instances.search( { 'Lhash': data['Lhash'], 'type': 'ECQP' }, 'url'): instances.extend(elt.split('|')) # and then the other isogeny friends instances.extend([ elt['url'] for elt in get_instances_by_Lhash_and_trace_hash( data["Lhash"], 4, int(data["Lhash"])) ]) exclude = { elt[1].rstrip('/').lstrip('/') for elt in self.friends if elt[1] } exclude.add(data['lfunc_url'].lstrip('/L/').rstrip('/')) for elt in ecs + names_and_urls(instances, exclude=exclude): # because of the splitting we must use G2C specific code add_friend(friends, elt) if is_curve: friends.append(('Twists', url_for(".index_Q", g20=str(data['g2'][0]), g21=str(data['g2'][1]), g22=str(data['g2'][2])))) friends.append(('L-function', data['lfunc_url'])) # Breadcrumbs self.bread = bread = [('Genus 2 Curves', url_for(".index")), (r'$\Q$', url_for(".index_Q")), ('%s' % data['slabel'][0], url_for(".by_conductor", cond=data['slabel'][0])), ('%s' % data['slabel'][1], url_for(".by_url_isogeny_class_label", cond=data['slabel'][0], alpha=data['slabel'][1]))] if is_curve: bread += [('%s' % data['slabel'][2], url_for(".by_url_isogeny_class_discriminant", cond=data['slabel'][0], alpha=data['slabel'][1], disc=data['slabel'][2])), ('%s' % data['slabel'][3], url_for(".by_url_curve_label", cond=data['slabel'][0], alpha=data['slabel'][1], disc=data['slabel'][2], num=data['slabel'][3]))] # Title self.title = "Genus 2 " + ("Curve " if is_curve else "Isogeny Class ") + data['label'] # Code snippets (only for curves) if not is_curve: return self.code = code = {} code['show'] = {'sage': '', 'magma': ''} # use default show names f, h = fh = data['min_eqn'] g = simplify_hyperelliptic(fh) code['curve'] = { 'sage': 'R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R(%s), R(%s));' % (f, h), 'magma': 'R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R!%s, R!%s);' % (f, h) } code['simple_curve'] = { 'sage': 'X = HyperellipticCurve(R(%s))' % (g), 'magma': 'X,pi:= SimplifiedModel(C);' } if data['abs_disc'] % 4096 == 0: ind2 = [a[0] for a in data['bad_lfactors']].index(2) bad2 = data['bad_lfactors'][ind2][1] magma_cond_option = ': ExcFactors:=[*<2,Valuation(' + str( data['cond']) + ',2),R!' + str(bad2) + '>*]' else: magma_cond_option = '' code['cond'] = { 'magma': 'Conductor(LSeries(C%s)); Factorization($1);' % magma_cond_option } code['disc'] = { 'magma': 'Discriminant(C); Factorization(Integers()!$1);' } code['geom_inv'] = { 'sage': 'C.igusa_clebsch_invariants(); [factor(a) for a in _]', 'magma': 'IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);' } code['aut'] = {'magma': 'AutomorphismGroup(C); IdentifyGroup($1);'} code['autQbar'] = { 'magma': 'AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);' } code['num_rat_wpts'] = { 'magma': '#Roots(HyperellipticPolynomials(SimplifiedModel(C)));' } if ratpts: code['rat_pts'] = { 'magma': '[' + ','.join([ "C![%s,%s,%s]" % (p[0], p[1], p[2]) for p in ratpts['rat_pts'] ]) + '];' } code['mw_group'] = {'magma': 'MordellWeilGroupGenus2(Jacobian(C));'} code['two_selmer'] = { 'magma': 'TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);' } code['has_square_sha'] = {'magma': 'HasSquareSha(Jacobian(C));'} code['locally_solvable'] = { 'magma': 'f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);' } code['torsion_subgroup'] = { 'magma': 'TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);' }
def make_class(self): # Extract the size of the isogeny class from the database classdata = db.ec_classdata.lucky({'lmfdb_iso': self.lmfdb_iso}) self.class_size = ncurves = classdata['class_size'] # Create a list of the curves in the class from the database number_key = 'Cnumber' if self.label_type == 'Cremona' else 'lmfdb_number' self.curves = [ db.ec_curvedata.lucky({ 'lmfdb_iso': self.lmfdb_iso, number_key: i + 1 }) for i in range(ncurves) ] # Set optimality flags. The optimal curve is conditionally # number 1 except in one case which is labeled differently in # the Cremona tables. We know which curve is optimal iff the # optimality code for curve #1 is 1 (except for class 990h). # Note that self is actually an elliptic curve, with number=1. # The code here allows us to update the display correctly by # changing one line in this file (defining OPTIMALITY_BOUND) # without changing the data. self.cremona_bound = CREMONA_BOUND self.optimality_bound = OPTIMALITY_BOUND self.optimality_known = (self.conductor < OPTIMALITY_BOUND) or ( (self.conductor < CREMONA_BOUND) and ((self.optimality == 1) or (self.Ciso == '990h'))) self.optimal_label = self.Clabel if self.label_type == 'Cremona' else self.lmfdb_label if self.conductor < OPTIMALITY_BOUND: for c in self.curves: c['optimal'] = (c['Cnumber'] == (3 if self.Ciso == '990h' else 1)) c['optimality_known'] = True elif self.conductor < CREMONA_BOUND: for c in self.curves: c['optimal'] = (c['optimality'] > 0 ) # this curve possibly optimal c['optimality_known'] = (c['optimality'] == 1 ) # this curve certainly optimal else: for c in self.curves: c['optimal'] = None c['optimality_known'] = False for c in self.curves: c['ai'] = c['ainvs'] c['curve_url_lmfdb'] = url_for(".by_triple_label", conductor=self.conductor, iso_label=self.iso_label, number=c['lmfdb_number']) c['curve_url_cremona'] = url_for( ".by_ec_label", label=c['Clabel']) if self.conductor < CREMONA_BOUND else "N/A" if self.label_type == 'Cremona': c['curve_label'] = c['Clabel'] _, c_iso, c_number = split_cremona_label(c['Clabel']) else: c['curve_label'] = c['lmfdb_label'] _, c_iso, c_number = split_lmfdb_label(c['lmfdb_label']) c['short_label'] = "{}{}".format(c_iso, c_number) from sage.matrix.all import Matrix M = classdata['isogeny_matrix'] # permute rows/cols to match labelling: the rows/cols in the # ec_classdata table are with respect to LMFDB ordering. if self.label_type == 'Cremona': perm = lambda i: next(c for c in self.curves if c['Cnumber'] == i + 1)['lmfdb_number'] - 1 M = [[M[perm(i)][perm(j)] for i in range(ncurves)] for j in range(ncurves)] M = Matrix(M) self.isogeny_matrix_str = latex(M) # Create isogeny graph with appropriate vertex labels: self.graph = make_graph(M, [c['short_label'] for c in self.curves]) P = self.graph.plot(edge_labels=True, vertex_size=1000) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.newform = raw_typeset( PowerSeriesRing(QQ, 'q')(classdata['anlist'], 20, check=True)) self.newform_label = ".".join( [str(self.conductor), str(2), 'a', self.iso_label]) self.newform_exists_in_db = db.mf_newforms.label_exists( self.newform_label) if self.newform_exists_in_db: char_orbit, hecke_orbit = self.newform_label.split('.')[2:] self.newform_link = url_for("cmf.by_url_newform_label", level=self.conductor, weight=2, char_orbit_label=char_orbit, hecke_orbit=hecke_orbit) self.lfunction_link = url_for("l_functions.l_function_ec_page", conductor_label=self.conductor, isogeny_class_label=self.iso_label) self.friends = [('L-function', self.lfunction_link)] if self.cm: # set CM field for Properties box. D = ZZ(self.cm).squarefree_part() coeffs = [(1 - D) // 4, -1, 1] if D % 4 == 1 else [-D, 0, 1] lab = db.nf_fields.lucky({'coeffs': coeffs}, projection='label') self.CMfield = field_pretty(lab) else: self.CMfield = "no" if self.conductor <= 300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor=self.conductor, isogeny=self.iso_label))] if self.conductor <= 50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor=self.conductor, isogeny=self.iso_label))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] if self.label_type == 'Cremona': self.title = "Elliptic curve isogeny class with Cremona label {} (LMFDB label {})".format( self.Ciso, self.lmfdb_iso) elif self.conductor < CREMONA_BOUND: self.title = "Elliptic curve isogeny class with LMFDB label {} (Cremona label {})".format( self.lmfdb_iso, self.Ciso) else: self.title = "Elliptic curve isogeny class with LMFDB label {}".format( self.lmfdb_iso) self.properties = [ ('Label', self.Ciso if self.label_type == 'Cremona' else self.lmfdb_iso), ('Number of curves', prop_int_pretty(ncurves)), ('Conductor', prop_int_pretty(self.conductor)), ('CM', '%s' % self.CMfield), ('Rank', prop_int_pretty(self.rank)) ] if ncurves > 1: self.properties += [('Graph', ''), (None, self.graph_link)] self.downloads = [('q-expansion to text', url_for(".download_EC_qexp", label=self.iso_label, limit=1000)), ('All stored data to text', url_for(".download_EC_all", label=self.iso_label))] self.bread = [('Elliptic curves', url_for("ecnf.index")), (r'$\Q$', url_for(".rational_elliptic_curves")), ('%s' % self.conductor, url_for(".by_conductor", conductor=self.conductor)), ('%s' % self.iso_label, ' ')] self.code = {} self.code['show'] = {'sage': ''} # use default show names self.code['class'] = { 'sage': 'E = EllipticCurve("%s1")\n' % (self.iso_label) + 'E.isogeny_class()\n' } self.code['curves'] = {'sage': 'E.isogeny_class().curves'} self.code['rank'] = {'sage': 'E.rank()'} self.code['q_eigenform'] = {'sage': 'E.q_eigenform(10)'} self.code['matrix'] = {'sage': 'E.isogeny_class().matrix()'} self.code['plot'] = { 'sage': 'E.isogeny_graph().plot(edge_labels=True)' }
def make_curve(self): # To start with the data fields of self are just those from the # databases. We reformat these, while computing some further (easy) # data about the curve on the fly. # Initialize data: data = self.data = {} endodata = self.endodata = {} # Polish data from database before putting it into the data dictionary: disc = ZZ(self.disc_sign) * ZZ(self.disc_key[3:]) # to deal with disc_key, uncomment line above and comment line below #disc = ZZ(self.disc_sign) * ZZ(self.abs_disc) data['disc'] = disc data['cond'] = ZZ(self.cond) data['min_eqn'] = self.min_eqn data['min_eqn_display'] = list_to_min_eqn(self.min_eqn) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['cond_factor_latex'] = web_latex(factor(int(self.cond))) data['aut_grp'] = groupid_to_meaningful(self.aut_grp) data['geom_aut_grp'] = groupid_to_meaningful(self.geom_aut_grp) data['igusa_clebsch'] = [ZZ(a) for a in self.igusa_clebsch] data['igusa'] = [ZZ(a) for a in self.igusa] data['g2'] = self.g2inv data['ic_norm'] = data['igusa_clebsch'] data['igusa_norm'] = data['igusa'] # Should we ever want to normalize the invariants further, then # uncomment the following lines: #data['ic_norm'] = normalize_invariants(data['igusa_clebsch'], [2, 4, 6, # 10]) #data['igusa_norm'] = normalize_invariants(data['igusa'], [2, 4, 6, 8, # 10]) data['ic_norm_factor_latex'] = [ web_latex(zfactor(i)) for i in data['ic_norm'] ] data['igusa_norm_factor_latex'] = [ web_latex(zfactor(j)) for j in data['igusa_norm'] ] data['num_rat_wpts'] = ZZ(self.num_rat_wpts) data['two_selmer_rank'] = ZZ(self.two_selmer_rank) if len(self.torsion) == 0: data['tor_struct'] = '\mathrm{trivial}' else: tor_struct = [ZZ(a) for a in self.torsion] data['tor_struct'] = ' \\times '.join( ['\Z/{%s}\Z' % n for n in tor_struct]) # Data derived from Sato-Tate group: isogeny_class = db_g2c().isogeny_classes.find_one( {'label': isog_label(self.label)}) st_data = get_st_data(isogeny_class) for key in st_data.keys(): data[key] = st_data[key] # GL_2 statement over the base field endodata['gl2_statement_base'] = \ gl2_statement_base(self.factorsRR_base, r'\(\Q\)') # NOTE: In what follows there is some copying of code and data that is # stupid from the point of view of efficiency but likely better from # that of maintenance. # Endomorphism data over QQ: endodata['factorsQQ_base'] = self.factorsQQ_base endodata['factorsRR_base'] = self.factorsRR_base endodata['ring_base'] = self.ring_base endodata['endo_statement_base'] = \ """Endomorphism ring over \(\Q\):""" + \ endo_statement(endodata['factorsQQ_base'], endodata['factorsRR_base'], endodata['ring_base'], r'') # Field of definition data: endodata['fod_label'] = self.fod_label endodata['fod_poly'] = intlist_to_poly(self.fod_coeffs) endodata['fod_statement'] = fod_statement(endodata['fod_label'], endodata['fod_poly']) # Endomorphism data over QQbar: endodata['factorsQQ_geom'] = self.factorsQQ_geom endodata['factorsRR_geom'] = self.factorsRR_geom endodata['ring_geom'] = self.ring_geom if self.fod_label != '1.1.1.1': endodata['gl2_statement_geom'] = \ gl2_statement_base(self.factorsRR_geom, r'\(\overline{\Q}\)') endodata['endo_statement_geom'] = \ """Endomorphism ring over \(\overline{\Q}\):""" + \ endo_statement(endodata['factorsQQ_geom'], endodata['factorsRR_geom'], endodata['ring_geom'], r'\overline{\Q}') # Full endomorphism lattice minus entries already treated: N = len(self.lattice) endodata['lattice'] = (self.lattice)[1:N - 1] if endodata['lattice']: endodata['lattice_statement_preamble'] = \ lattice_statement_preamble() endodata['lattice_statement'] = \ lattice_statement(endodata['lattice']) # Splitting field description: #endodata['is_simple_base'] = self.is_simple_base endodata['is_simple_geom'] = self.is_simple_geom endodata['spl_fod_label'] = self.spl_fod_label endodata['spl_fod_poly'] = intlist_to_poly(self.spl_fod_coeffs) endodata['spl_fod_statement'] = \ spl_fod_statement(endodata['is_simple_geom'], endodata['spl_fod_label'], endodata['spl_fod_poly']) # Isogeny factors: if not endodata['is_simple_geom']: endodata['spl_facs_coeffs'] = self.spl_facs_coeffs # This could be done non-uniformly as well... later. if len(self.spl_facs_labels) == len(self.spl_facs_coeffs): endodata['spl_facs_labels'] = self.spl_facs_labels else: endodata['spl_facs_labels'] = [ '' for coeffs in self.spl_facs_coeffs ] endodata['spl_facs_condnorms'] = self.spl_facs_condnorms endodata['spl_statement'] = \ spl_statement(endodata['spl_facs_coeffs'], endodata['spl_facs_labels'], endodata['spl_facs_condnorms']) # Title self.title = "Genus 2 Curve %s" % (self.label) # Lady Gaga box self.plot = encode_plot(eqn_list_to_curve_plot(self.min_eqn)) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [ ('Label', self.label), (None, self.plot_link), ('Conductor', '%s' % self.cond), ('Discriminant', '%s' % data['disc']), ('Invariants', '%s </br> %s </br> %s </br> %s' % tuple(data['ic_norm'])), ('Sato-Tate group', '\(%s\)' % data['st_group_name']), ('\(%s\)' % data['real_geom_end_alg_disp'][0], '\(%s\)' % data['real_geom_end_alg_disp'][1]), ('\(\mathrm{GL}_2\)-type', '%s' % data['is_gl2_type_name']) ] x = self.label.split('.')[1] self.friends = [ ('Isogeny class %s' % isog_label(self.label), url_for(".by_double_iso_label", conductor=self.cond, iso_label=x)), ('L-function', url_for("l_functions.l_function_genus2_page", cond=self.cond, x=x)), ('Twists', url_for(".index_Q", g20=self.g2inv[0], g21=self.g2inv[1], g22=self.g2inv[2])) #('Twists2', # url_for(".index_Q", # igusa_clebsch = str(self.igusa_clebsch))) #doesn't work. #('Siegel modular form someday', '.') ] self.downloads = [('Download all stored data', '.')] # Breadcrumbs iso = self.label.split('.')[1] num = '.'.join(self.label.split('.')[2:4]) self.bread = [('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % self.cond, url_for(".by_conductor", conductor=self.cond)), ('%s' % iso, url_for(".by_double_iso_label", conductor=self.cond, iso_label=iso)), ('Genus 2 curve %s' % num, url_for(".by_g2c_label", label=self.label))] # Make code that is used on the page: self.make_code_snippets()
def make_curve(self): # To start with the data fields of self are just those from the # databases. We reformat these, while computing some further (easy) # data about the curve on the fly. # Initialize data: data = self.data = {} endodata = self.endodata = {} # Polish data from database before putting it into the data dictionary: disc = ZZ(self.disc_sign) * ZZ(self.disc_key[3:]) # to deal with disc_key, uncomment line above and comment line below #disc = ZZ(self.disc_sign) * ZZ(self.abs_disc) data['disc'] = disc data['abs_disc'] = ZZ(self.disc_key[3:]) data['cond'] = ZZ(self.cond) data['min_eqn'] = self.min_eqn data['min_eqn_display'] = list_to_min_eqn(self.min_eqn) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['cond_factor_latex'] = web_latex(factor(int(self.cond))) data['aut_grp_id'] = self.aut_grp_id data['geom_aut_grp_id'] = self.geom_aut_grp_id data['igusa_clebsch'] = [ZZ(a) for a in self.igusa_clebsch] data['igusa'] = [ZZ(a) for a in self.igusa] data['g2'] = self.g2inv data['ic_norm'] = data['igusa_clebsch'] data['igusa_norm'] = data['igusa'] # Should we ever want to normalize the invariants further, then # uncomment the following lines: #data['ic_norm'] = normalize_invariants(data['igusa_clebsch'], [2, 4, 6, # 10]) #data['igusa_norm'] = normalize_invariants(data['igusa'], [2, 4, 6, 8, # 10]) data['ic_norm_factor_latex'] = [web_latex(zfactor(i)) for i in data['ic_norm']] data['igusa_norm_factor_latex'] = [ web_latex(zfactor(j)) for j in data['igusa_norm'] ] data['num_rat_wpts'] = ZZ(self.num_rat_wpts) data['two_selmer_rank'] = ZZ(self.two_selmer_rank) data['analytic_rank'] = ZZ(self.analytic_rank) data['has_square_sha'] = "square" if self.has_square_sha else "twice a square" data['locally_solvable'] = "yes" if self.locally_solvable else "no" if len(self.torsion) == 0: data['tor_struct'] = '\mathrm{trivial}' else: tor_struct = [ ZZ(a) for a in self.torsion ] data['tor_struct'] = ' \\times '.join([ '\Z/{%s}\Z' % n for n in tor_struct ]) # Data derived from Sato-Tate group: isogeny_class = g2cdb().isogeny_classes.find_one({'label' : isogeny_class_label(self.label)}) st_data = get_st_data(isogeny_class) for key in st_data.keys(): data[key] = st_data[key] # GL_2 statement over the base field endodata['gl2_statement_base'] = \ gl2_statement_base(self.factorsRR_base, r'\(\Q\)') # NOTE: In what follows there is some copying of code and data that is # stupid from the point of view of efficiency but likely better from # that of maintenance. # Endomorphism data over QQ: endodata['factorsQQ_base'] = self.factorsQQ_base endodata['factorsRR_base'] = self.factorsRR_base endodata['ring_base'] = self.ring_base endodata['endo_statement_base'] = \ """Endomorphism ring over \(\Q\):""" + \ endo_statement(endodata['factorsQQ_base'], endodata['factorsRR_base'], endodata['ring_base'], r'') # Field of definition data: endodata['fod_label'] = self.fod_label endodata['fod_poly'] = intlist_to_poly(self.fod_coeffs) endodata['fod_statement'] = fod_statement(endodata['fod_label'], endodata['fod_poly']) # Endomorphism data over QQbar: endodata['factorsQQ_geom'] = self.factorsQQ_geom endodata['factorsRR_geom'] = self.factorsRR_geom endodata['ring_geom'] = self.ring_geom if self.fod_label != '1.1.1.1': endodata['gl2_statement_geom'] = \ gl2_statement_base(self.factorsRR_geom, r'\(\overline{\Q}\)') endodata['endo_statement_geom'] = \ """Endomorphism ring over \(\overline{\Q}\):""" + \ endo_statement( endodata['factorsQQ_geom'], endodata['factorsRR_geom'], endodata['ring_geom'], r'\overline{\Q}') # Full endomorphism lattice minus entries already treated: N = len(self.lattice) endodata['lattice'] = (self.lattice)[1:N - 1] if endodata['lattice']: endodata['lattice_statement_preamble'] = lattice_statement_preamble() endodata['lattice_statement'] = lattice_statement(endodata['lattice']) # Splitting field description: #endodata['is_simple_base'] = self.is_simple_base endodata['is_simple_geom'] = self.is_simple_geom endodata['spl_fod_label'] = self.spl_fod_label endodata['spl_fod_poly'] = intlist_to_poly(self.spl_fod_coeffs) endodata['spl_fod_statement'] = spl_fod_statement( endodata['is_simple_geom'], endodata['spl_fod_label'], endodata['spl_fod_poly']) # Isogeny factors: if not endodata['is_simple_geom']: endodata['spl_facs_coeffs'] = self.spl_facs_coeffs # This could be done non-uniformly as well... later. if len(self.spl_facs_labels) == len(self.spl_facs_coeffs): endodata['spl_facs_labels'] = self.spl_facs_labels else: endodata['spl_facs_labels'] = ['' for coeffs in self.spl_facs_coeffs] endodata['spl_facs_condnorms'] = self.spl_facs_condnorms endodata['spl_statement'] = spl_statement( endodata['spl_facs_coeffs'], endodata['spl_facs_labels'], endodata['spl_facs_condnorms']) # Title self.title = "Genus 2 Curve %s" % (self.label) alpha = self.label.split('.')[1] num = self.label.split('.')[3] # Lady Gaga box self.plot = encode_plot(eqn_list_to_curve_plot(self.min_eqn)) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = ( ('Label', self.label), (None, self.plot_link), ('Conductor','%s' % self.cond), ('Discriminant', '%s' % data['disc']), ('Invariants', '%s </br> %s </br> %s </br> %s' % tuple(data['ic_norm'])), ('Sato-Tate group', data['st_group_href']), ('\(%s\)' % data['real_geom_end_alg_disp'][0], '\(%s\)' % data['real_geom_end_alg_disp'][1]), ('\(\mathrm{GL}_2\)-type','%s' % data['is_gl2_type_name']) ) self.friends = [ ('Isogeny class %s' % isogeny_class_label(self.label), url_for(".by_url_isogeny_class_label", cond = self.cond,alpha =alpha)), ('L-function', url_for("l_functions.l_function_genus2_page", cond=self.cond,x=alpha)), ('Twists', url_for(".index_Q", g20 = self.g2inv[0], g21 = self.g2inv[1], g22 = self.g2inv[2])) #('Siegel modular form someday', '.') ] if not endodata['is_simple_geom']: self.friends += [('Elliptic curve %s' % lab,url_for_ec(lab)) for lab in endodata['spl_facs_labels'] if lab != ''] #self.downloads = [('Download all stored data', '.')] # Breadcrumbs self.bread = ( ('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % self.cond, url_for(".by_conductor", cond=self.cond)), ('%s' % alpha, url_for(".by_url_isogeny_class_label", cond=self.cond, alpha=alpha)), ('%s' % self.abs_disc, url_for(".by_url_isogeny_class_discriminant", cond=self.cond, alpha=alpha, disc=self.abs_disc)), ('%s' % num, url_for(".by_url_curve_label", cond=self.cond, alpha=alpha, disc=self.abs_disc, num=num)) ) # Make code that is used on the page: self.code = {} self.code['show'] = {'sage':'','magma':''} # use default show names self.code['curve'] = {'sage':'R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R(%s), R(%s))'%(self.data['min_eqn'][0],self.data['min_eqn'][1]), 'magma':'R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R!%s, R!%s);'%(self.data['min_eqn'][0],self.data['min_eqn'][1])} if self.data['disc'] % 4096 == 0: ind2 = [a[0] for a in self.data['isogeny_class']['bad_lfactors']].index(2) bad2 = self.data['isogeny_class']['bad_lfactors'][ind2][1] magma_cond_option = ': ExcFactors:=[*<2,Valuation('+str(self.data['cond'])+',2),R!'+str(bad2)+'>*]' else: magma_cond_option = '' self.code['cond'] = {'magma': 'Conductor(LSeries(C%s)); Factorization($1);'% magma_cond_option} self.code['disc'] = {'magma':'Discriminant(C); Factorization(Integers()!$1);'} self.code['igusa_clebsch'] = {'sage':'C.igusa_clebsch_invariants(); [factor(a) for a in _]', 'magma':'IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];'} self.code['igusa'] = {'magma':'IgusaInvariants(C); [Factorization(Integers()!a): a in $1];'} self.code['g2'] = {'magma':'G2Invariants(C);'} self.code['aut'] = {'magma':'AutomorphismGroup(C); IdentifyGroup($1);'} self.code['autQbar'] = {'magma':'AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);'} self.code['num_rat_wpts'] = {'magma':'#Roots(HyperellipticPolynomials(SimplifiedModel(C)));'} self.code['two_selmer'] = {'magma':'TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);'} self.code['has_square_sha'] = {'magma':'HasSquareSha(Jacobian(C));'} self.code['locally_solvable'] = {'magma':'f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsLocallyEverywhere(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);'} self.code['tor_struct'] = {'magma':'TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);'}
def make_E(self): K = self.field.K() # a-invariants self.ainvs = parse_ainvs(K, self.ainvs) self.latex_ainvs = web_latex(self.ainvs) self.numb = str(self.number) # Conductor, discriminant, j-invariant N = ideal_from_string(K, self.conductor_ideal) self.cond = web_latex(N) self.cond_norm = web_latex(self.conductor_norm) local_data = self.local_data # NB badprimes is a list of primes which divide the # discriminant of this model. At most one of these might # actually be a prime of good reduction, if the curve has no # global minimal model. badprimes = [ideal_from_string(K, ld['p']) for ld in local_data] badnorms = [ZZ(ld['normp']) for ld in local_data] mindisc_ords = [ld['ord_disc'] for ld in local_data] # Assumption: the curve models stored in the database are # either global minimal models or minimal at all but one # prime, so the list here has length 0 or 1: self.non_min_primes = [ideal_from_string(K, P) for P in self.non_min_p] self.is_minimal = (len(self.non_min_primes) == 0) self.has_minimal_model = self.is_minimal disc_ords = [ld['ord_disc'] for ld in local_data] if not self.is_minimal: Pmin = self.non_min_primes[0] P_index = badprimes.index(Pmin) self.non_min_prime = web_latex(Pmin) disc_ords[P_index] += 12 if self.conductor_norm == 1: # since the factorization of (1) displays as "1" self.fact_cond = self.cond self.fact_cond_norm = self.cond else: Nfac = Factorization([(P, ld['ord_cond']) for P, ld in zip(badprimes, local_data)]) self.fact_cond = web_latex_ideal_fact(Nfac) Nnormfac = Factorization([(q, ld['ord_cond']) for q, ld in zip(badnorms, local_data)]) self.fact_cond_norm = web_latex(Nnormfac) # D is the discriminant ideal of the model D = prod([P**e for P, e in zip(badprimes, disc_ords)], K.ideal(1)) self.disc = web_latex(D) Dnorm = D.norm() self.disc_norm = web_latex(Dnorm) if Dnorm == 1: # since the factorization of (1) displays as "1" self.fact_disc = self.disc self.fact_disc_norm = self.disc else: Dfac = Factorization([(P, e) for P, e in zip(badprimes, disc_ords)]) self.fact_disc = web_latex_ideal_fact(Dfac) Dnormfac = Factorization([(q, e) for q, e in zip(badnorms, disc_ords)]) self.fact_disc_norm = web_latex(Dnormfac) if not self.is_minimal: Dmin = ideal_from_string(K, self.minD) self.mindisc = web_latex(Dmin) Dmin_norm = Dmin.norm() self.mindisc_norm = web_latex(Dmin_norm) if Dmin_norm == 1: # since the factorization of (1) displays as "1" self.fact_mindisc = self.mindisc self.fact_mindisc_norm = self.mindisc else: Dminfac = Factorization([ (P, e) for P, edd in zip(badprimes, mindisc_ords) ]) self.fact_mindisc = web_latex_ideal_fact(Dminfac) Dminnormfac = Factorization([ (q, e) for q, e in zip(badnorms, mindisc_ords) ]) self.fact_mindisc_norm = web_latex(Dminnormfac) j = self.field.parse_NFelt(self.jinv) # if j: # d = j.denominator() # n = d * j # numerator exists for quadratic fields only! # g = GCD(list(n)) # n1 = n / g # self.j = web_latex(n1) # if d != 1: # if n1 > 1: # # self.j = "("+self.j+")\(/\)"+web_latex(d) # self.j = web_latex(r"\frac{%s}{%s}" % (self.j, d)) # else: # self.j = web_latex(d) # if g > 1: # if n1 > 1: # self.j = web_latex(g) + self.j # else: # self.j = web_latex(g) self.j = web_latex(j) self.fact_j = None # See issue 1258: some j factorizations work but take too long # (e.g. EllipticCurve/6.6.371293.1/1.1/a/1). Note that we do # store the factorization of the denominator of j and display # that, which is the most interesting part. # Images of Galois representations if not hasattr(self, 'galois_images'): #print "No Galois image data" self.galois_images = "?" self.non_surjective_primes = "?" self.galois_data = [] else: self.galois_data = [{ 'p': p, 'image': im } for p, im in zip(self.non_surjective_primes, self.galois_images)] # CM and End(E) self.cm_bool = "no" self.End = "\(\Z\)" if self.cm: self.rational_cm = K(self.cm).is_square() self.cm_sqf = ZZ(self.cm).squarefree_part() self.cm_bool = "yes (\(%s\))" % self.cm if self.cm % 4 == 0: d4 = ZZ(self.cm) // 4 self.End = "\(\Z[\sqrt{%s}]\)" % (d4) else: self.End = "\(\Z[(1+\sqrt{%s})/2]\)" % self.cm # Galois images in CM case: if self.cm and self.galois_images != '?': self.cm_ramp = [ p for p in ZZ(self.cm).support() if not p in self.non_surjective_primes ] self.cm_nramp = len(self.cm_ramp) if self.cm_nramp == 1: self.cm_ramp = self.cm_ramp[0] else: self.cm_ramp = ", ".join([str(p) for p in self.cm_ramp]) # Sato-Tate: # The lines below will need to change once we have curves over non-quadratic fields # that contain the Hilbert class field of an imaginary quadratic field if self.cm: if self.signature == [0, 1] and ZZ( -self.abs_disc * self.cm).is_square(): self.ST = st_link_by_name(1, 2, 'U(1)') else: self.ST = st_link_by_name(1, 2, 'N(U(1))') else: self.ST = st_link_by_name(1, 2, 'SU(2)') # Q-curve / Base change self.qc = "no" try: if self.q_curve: self.qc = "yes" except AttributeError: # in case the db entry does not have this field set pass # Torsion self.ntors = web_latex(self.torsion_order) self.tr = len(self.torsion_structure) if self.tr == 0: self.tor_struct_pretty = "Trivial" if self.tr == 1: self.tor_struct_pretty = "\(\Z/%s\Z\)" % self.torsion_structure[0] if self.tr == 2: self.tor_struct_pretty = r"\(\Z/%s\Z\times\Z/%s\Z\)" % tuple( self.torsion_structure) torsion_gens = [parse_point(K, P) for P in self.torsion_gens] self.torsion_gens = ",".join([web_point(P) for P in torsion_gens]) # Rank or bounds try: self.rk = web_latex(self.rank) except AttributeError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.rank_bounds) except AttributeError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not available" # Generators try: gens = [parse_point(K, P) for P in self.gens] self.gens = ", ".join([web_point(P) for P in gens]) if self.rk == "?": self.reg = "not available" else: if gens: try: self.reg = self.reg except AttributeError: self.reg = "not available" pass # self.reg already set else: self.reg = 1 # otherwise we only get 1.00000... except AttributeError: self.gens = "not available" self.reg = "not available" try: if self.rank == 0: self.reg = 1 except AttributeError: pass # Local data for P, ld in zip(badprimes, local_data): ld['p'] = web_latex(P) ld['norm'] = P.norm() ld['kod'] = web_latex(ld['kod']).replace('$', '') # URLs of self and related objects: self.urls = {} # It's useful to be able to use this class out of context, when calling url_for will fail: try: self.urls['curve'] = url_for(".show_ecnf", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label, number=self.number) except RuntimeError: return self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=quote( self.conductor_label), class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=quote( self.conductor_label)) self.urls['field'] = url_for(".show_ecnf1", nf=self.field_label) # Isogeny information if self.number == 1: isogmat = self.isogeny_matrix else: isogmat = db_ecnf().find_one({ 'class_label': self.class_label, 'number': 1 })['isogeny_matrix'] self.class_deg = max([max(d) for d in isogmat]) self.one_deg = ZZ(self.class_deg).is_prime() self.ncurves = db_ecnf().count({'class_label': self.class_label}) isodegs = [str(d) for d in self.isogeny_degrees if d > 1] if len(isodegs) < 3: self.isogeny_degrees = " and ".join(isodegs) else: self.isogeny_degrees = " and ".join( [", ".join(isodegs[:-1]), isodegs[-1]]) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0, 1] if totally_real: self.hmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field.label, label=self.hmf_label) self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join( [self.field.label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) self.friends = [] self.friends += [('Isogeny class ' + self.short_class_label, self.urls['class'])] self.friends += [('Twists', url_for('ecnf.index', field=self.field_label, jinv=rename_j(j)))] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] self.friends += [('L-function', self.urls['Lfunction'])] if imag_quadratic: #self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')] if "CM" in self.label: self.friends += [('Bianchi Modular Form is not cuspidal', '')] else: self.friends += [('Bianchi Modular Form %s' % self.bmf_label, self.bmf_url)] self.properties = [('Base field', self.field.field_pretty()), ('Label', self.label)] # Plot if K.signature()[0]: self.plot = encode_plot( EC_nf_plot(K, self.ainvs, self.field.generator_name())) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties += [(None, self.plot_link)] self.properties += [ ('Conductor', self.cond), ('Conductor norm', self.cond_norm), # See issue #796 for why this is hidden (can be very large) # ('j-invariant', self.j), ('CM', self.cm_bool) ] if self.base_change: self.properties += [ ('base-change', 'yes: %s' % ','.join([str(lab) for lab in self.base_change])) ] else: self.base_change = [] # in case it was False instead of [] self.properties += [('Q-curve', self.qc)] r = self.rk if r == "?": r = self.rk_bnds self.properties += [ ('Torsion order', self.ntors), ('Rank', r), ] for E0 in self.base_change: self.friends += [('Base-change of %s /\(\Q\)' % E0, url_for("ec.by_ec_label", label=E0))] self._code = None # will be set if needed by get_code()
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these. # Old version: required constructing the actual elliptic curve # E, and computing some further data about it. # New version (May 2016): extra data fields now in the # database so we do not have to construct the curve or do any # computation with it on the fly. As a failsafe the old way # is still included. data = self.data = {} data['ainvs'] = self.ainvs data['conductor'] = N = ZZ(self.conductor) data['j_invariant'] = QQ(str(self.jinv)) data['j_inv_factor'] = latex(0) if data['j_invariant']: # don't factor 0 data['j_inv_factor'] = latex(data['j_invariant'].factor()) data['j_inv_str'] = unicode(str(data['j_invariant'])) data['j_inv_latex'] = web_latex(data['j_invariant']) # extract data about MW rank, generators, heights and torsion: self.make_mw() # get more data from the database entry data['equation'] = self.equation local_data = self.local_data D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data]) data['disc'] = D Nfac = Factorization([(ZZ(ld['p']),ld['ord_cond']) for ld in local_data]) Dfac = Factorization([(ZZ(ld['p']),ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD)) data['minq_D'] = minqD = self.min_quad_twist['disc'] minq_label = self.min_quad_twist['label'] data['minq_label'] = db.ec_curves.lucky({'label':minq_label}, 'lmfdb_label') data['minq_info'] = '(itself)' if minqD==1 else '(by %s)' % minqD if self.degree is None: data['degree'] = 0 # invalid, but will be displayed nicely else: data['degree'] = self.degree if self.number == 1: data['an'] = self.anlist data['ap'] = self.aplist else: r = db.ec_curves.lucky({'lmfdb_iso':self.lmfdb_iso, 'number':1}) data['an'] = r['anlist'] data['ap'] = r['aplist'] minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label']) data['disc_factor'] = latex(Dfac) data['cond_factor'] =latex(Nfac) data['disc_latex'] = web_latex(D) data['cond_latex'] = web_latex(N) data['galois_images'] = [trim_galois_image_code(s) for s in self.mod_p_images] data['non_maximal_primes'] = self.non_maximal_primes data['galois_data'] = [{'p': p,'image': im } for p,im in zip(data['non_maximal_primes'], data['galois_images'])] data['CMD'] = self.cm data['CM'] = "no" data['EndE'] = "\(\Z\)" if self.cm: data['cm_ramp'] = [p for p in ZZ(self.cm).support() if not p in self.non_maximal_primes] data['cm_nramp'] = len(data['cm_ramp']) if data['cm_nramp']==1: data['cm_ramp'] = data['cm_ramp'][0] else: data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']]) data['cm_sqf'] = ZZ(self.cm).squarefree_part() data['CM'] = "yes (\(D=%s\))" % data['CMD'] if data['CMD']%4==0: d4 = ZZ(data['CMD'])//4 data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4 else: data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD'] data['ST'] = st_link_by_name(1,2,'N(U(1))') else: data['ST'] = st_link_by_name(1,2,'SU(2)') data['p_adic_primes'] = [p for i,p in enumerate(prime_range(5, 100)) if (N*data['ap'][i]) %p !=0] cond, iso, num = split_lmfdb_label(self.lmfdb_label) self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.one_deg = ZZ(self.class_deg).is_prime() self.ncurves = db.ec_curves.count({'lmfdb_iso':self.lmfdb_iso}) isodegs = [str(d) for d in self.isogeny_degrees if d>1] if len(isodegs)<3: data['isogeny_degrees'] = " and ".join(isodegs) else: data['isogeny_degrees'] = " and ".join([", ".join(isodegs[:-1]),isodegs[-1]]) if self.twoadic_gens: from sage.matrix.all import Matrix data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens]) data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html" # Leading term of L-function & other BSD data self.make_bsd() # Optimality (the optimal curve in the class is the curve # whose Cremona label ends in '1' except for '990h' which was # labelled wrongly long ago) if self.iso == '990h': data['Gamma0optimal'] = bool(self.number == 3) else: data['Gamma0optimal'] = bool(self.number == 1) data['p_adic_data_exists'] = False if data['Gamma0optimal']: data['p_adic_data_exists'] = db.ec_padic.exists({'lmfdb_iso': self.lmfdb_iso}) # Iwasawa data (where present) self.make_iwasawa() # Torsion growth data (where present) self.make_torsion_growth() data['newform'] = web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True)) data['newform_label'] = self.newform_label = newform_label(cond,2,1,iso) self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) self.newform_exists_in_db = is_newform_in_db(self.newform_label) self._code = None self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso) self.friends = [ ('Isogeny class ' + self.lmfdb_iso, self.class_url), ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)), ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)), ('L-function', url_for("l_functions.l_function_ec_page", conductor_label = N, isogeny_class_label = iso))] if not self.cm: if N<=300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor = N, isogeny = iso))] if N<=50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor = N, isogeny = iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)), ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)), ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')), ('Download SageMath code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')), ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp')) ] try: self.plot = encode_plot(self.E.plot()) except AttributeError: self.plot = encode_plot(EllipticCurve(data['ainvs']).plot()) self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(self.plot) self.properties = [('Label', self.lmfdb_label), (None, self.plot_link), ('Conductor', '\(%s\)' % data['conductor']), ('Discriminant', '\(%s\)' % data['disc']), ('j-invariant', '%s' % data['j_inv_latex']), ('CM', '%s' % data['CM']), ('Rank', '\(%s\)' % self.mw['rank']), ('Torsion Structure', '\(%s\)' % self.mw['tor_struct']) ] self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)), ('%s' % num,' ')]
def make_class(self): # Create a list of the curves in the class from the database self.db_curves = list(db.ec_nfcurves.search( {'field_label': self.field_label, 'conductor_norm': self.conductor_norm, 'conductor_label': self.conductor_label, 'iso_nlabel': self.iso_nlabel})) # Rank or bounds try: self.rk = web_latex(self.db_curves[0]['rank']) except KeyError: self.rk = "?" try: self.rk_bnds = "%s...%s" % tuple(self.db_curves[0]['rank_bounds']) except KeyError: self.rank_bounds = [0, Infinity] self.rk_bnds = "not recorded" # Extract the isogeny degree matrix from the database if not hasattr(self, 'isogeny_matrix'): # this would happen if the class is initiated with a curve # which is not #1 in its class: self.isogeny_matrix = self.db_curves[0].isogeny_matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) self.one_deg = ZZ(self.class_deg).is_prime() # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.isogeny_matrix_str = latex(Matrix(self.isogeny_matrix)) self.field = FIELD(self.field_label) self.field_name = field_pretty(self.field_label) self.field_knowl = nf_display_knowl(self.field_label, self.field_name) def curve_url(c): return url_for(".show_ecnf", nf=c['field_label'], conductor_label=c['conductor_label'], class_label=c['iso_label'], number=c['number']) self.curves = [[c['short_label'], curve_url(c), web_ainvs(self.field_label,c['ainvs'])] for c in self.db_curves] self.urls = {} self.urls['class'] = url_for(".show_ecnf_isoclass", nf=self.field_label, conductor_label=self.conductor_label, class_label=self.iso_label) self.urls['conductor'] = url_for(".show_ecnf_conductor", nf=self.field_label, conductor_label=self.conductor_label) self.urls['field'] = url_for('.show_ecnf1', nf=self.field_label) sig = self.signature totally_real = sig[1] == 0 imag_quadratic = sig == [0,1] if totally_real: self.hmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.urls['hmf'] = url_for('hmf.render_hmf_webpage', field_label=self.field_label, label=self.hmf_label) if sig[0] <= 2: self.urls['Lfunction'] = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) elif self.abs_disc ** 2 * self.conductor_norm < 40000: # we shouldn't trust the Lfun computed on the fly for large conductor self.urls['Lfunction'] = url_for("l_functions.l_function_hmf_page", field=self.field_label, label=self.hmf_label, character='0', number='0') if imag_quadratic: self.bmf_label = "-".join([self.field_label, self.conductor_label, self.iso_label]) self.bmf_url = url_for('bmf.render_bmf_webpage', field_label=self.field_label, level_label=self.conductor_label, label_suffix=self.iso_label) self.urls['Lfunction'] = url_for("l_functions.l_function_ecnf_page", field_label=self.field_label, conductor_label=self.conductor_label, isogeny_class_label=self.iso_label) self.friends = [] if totally_real: self.friends += [('Hilbert Modular Form ' + self.hmf_label, self.urls['hmf'])] if imag_quadratic: #self.friends += [('Bianchi Modular Form %s not available' % self.bmf_label, '')] self.friends += [('Bianchi Modular Form %s' % self.bmf_label, self.bmf_url)] if 'Lfunction' in self.urls: self.friends += [('L-function', self.urls['Lfunction'])] else: self.friends += [('L-function not available', "")] self.properties = [('Base field', self.field_name), ('Label', self.class_label), (None, self.graph_link), ('Conductor', '%s' % self.conductor_label) ] if self.rk != '?': self.properties += [('Rank', '%s' % self.rk)] else: if self.rk_bnds == 'not recorded': self.properties += [('Rank', '%s' % self.rk_bnds)] else: self.properties += [('Rank bounds', '%s' % self.rk_bnds)] self.bread = [('Elliptic Curves ', url_for(".index")), (self.field_label, self.urls['field']), (self.conductor_label, self.urls['conductor']), ('isogeny class %s' % self.short_label, self.urls['class'])]
def make_curve(self): # To start with the data fields of self are just those from # the database. We need to reformat these, construct the # and compute some further (easy) data about it. # # Weierstrass equation data = self.data = {} disc = ZZ(self.disc_sign) * ZZ(self.disc_key[3:]) # to deal with disc_key, uncomment line above and remove line below #disc = ZZ(self.disc_sign) * ZZ(self.abs_disc) data['disc'] = disc data['cond'] = ZZ(self.cond) data['min_eqn'] = self.min_eqn data['min_eqn_display'] = list_to_min_eqn(self.min_eqn) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['cond_factor_latex'] = web_latex(factor(int(self.cond))) data['aut_grp'] = groupid_to_meaningful(self.aut_grp) data['geom_aut_grp'] = groupid_to_meaningful(self.geom_aut_grp) data['igusa_clebsch'] = [ZZ(a) for a in self.igusa_clebsch] data['igusa'] = igusa_clebsch_to_igusa(data['igusa_clebsch']) data['g2'] = igusa_to_g2(data['igusa']) data['ic_norm'] = normalize_invariants(data['igusa_clebsch'],[1,2,3,5]) data['igusa_norm'] = normalize_invariants(data['igusa'],[1,2,3,4,5]) data['ic_norm_factor_latex'] = [web_latex(zfactor(i)) for i in data['ic_norm']] data['igusa_norm_factor_latex'] = [web_latex(zfactor(j)) for j in data['igusa_norm']] data['num_rat_wpts'] = ZZ(self.num_rat_wpts) data['two_selmer_rank'] = ZZ(self.two_selmer_rank) if len(self.torsion) == 0: data['tor_struct'] = '\mathrm{trivial}' else: tor_struct = [ZZ(a) for a in self.torsion] data['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct]) isogeny_class = db_g2c().isogeny_classes.find_one({'label' : isog_label(self.label)}) end_data = get_end_data(isogeny_class) for key in end_data.keys(): data[key] = end_data[key] x = self.label.split('.')[1] self.make_code_snippets() self.friends = [ ('Isogeny class %s' % isog_label(self.label), url_for(".by_double_iso_label", conductor = self.cond, iso_label = x)), ('L-function', url_for("l_functions.l_function_genus2_page", cond=self.cond,x=x)), ('Twists',url_for(".index_Q", ic0 = self.igusa_clebsch[0], ic1 = self.igusa_clebsch[1],ic2 = self.igusa_clebsch[2],ic3 = self.igusa_clebsch[3])), #('Twists2',url_for(".index_Q", igusa_clebsch = str(self.igusa_clebsch))) #doesn't work. #('Siegel modular form someday', '.') ] self.downloads = [ ('Download all stored data', '.')] iso = self.label.split('.')[1] num = '.'.join(self.label.split('.')[2:4]) self.plot = encode_plot(eqn_list_to_curve_plot(self.min_eqn)) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.label), (None, self.plot_link), ('Conductor','%s' % self.cond), ('Discriminant', '%s' % data['disc']), ('Invariants', '%s </br> %s </br> %s </br> %s'% tuple(data['ic_norm'])), ('Sato-Tate group', '\(%s\)' % data['st_group_name']), ('\(%s\)' % data['real_geom_end_alg_name'][0],'\(%s\)' % data['real_geom_end_alg_name'][1]), ('\(\mathrm{GL}_2\)-type','%s' % data['is_gl2_type_name'])] self.title = "Genus 2 Curve %s" % (self.label) self.bread = [ ('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % self.cond, url_for(".by_conductor", conductor=self.cond)), ('%s' % iso, url_for(".by_double_iso_label", conductor=self.cond, iso_label=iso)), ('Genus 2 curve %s' % num, url_for(".by_g2c_label", label=self.label))]
def make_class(self): self.CM = self.cm N, iso, number = split_lmfdb_label(self.lmfdb_iso) # Extract the size of the isogeny class from the database ncurves = self.class_size # Create a list of the curves in the class from the database self.curves = [db.ec_curves.lucky({'iso':self.iso, 'lmfdb_number': i+1}) for i in range(ncurves)] # Set optimality flags. The optimal curve is number 1 except # in one case which is labeled differently in the Cremona tables for c in self.curves: c['optimal'] = (c['number']==(3 if self.label == '990h' else 1)) c['ai'] = c['ainvs'] c['url'] = url_for(".by_triple_label", conductor=N, iso_label=iso, number=c['lmfdb_number']) from sage.matrix.all import Matrix self.isogeny_matrix = Matrix(self.isogeny_matrix) self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix)) # Create isogeny graph: self.graph = make_graph(self.isogeny_matrix) P = self.graph.plot(edge_labels=True) self.graph_img = encode_plot(P) self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img self.newform = web_latex(PowerSeriesRing(QQ, 'q')(self.anlist, 20, check=True)) self.newform_label = db.mf_newforms.lucky({'level':N, 'weight':2, 'related_objects':{'$contains':'EllipticCurve/Q/%s/%s' % (N, iso)}},'label') self.newform_exists_in_db = self.newform_label is not None if self.newform_label is not None: char_orbit, hecke_orbit = self.newform_label.split('.')[2:] self.newform_link = url_for("cmf.by_url_newform_label", level=N, weight=2, char_orbit_label=char_orbit, hecke_orbit=hecke_orbit) self.lfunction_link = url_for("l_functions.l_function_ec_page", conductor_label = N, isogeny_class_label = iso) self.friends = [('L-function', self.lfunction_link)] if not self.CM: self.CM = "no" if int(N)<=300: self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor = N, isogeny = iso))] if int(N)<=50: self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor = N, isogeny = iso))] if self.newform_exists_in_db: self.friends += [('Modular form ' + self.newform_label, self.newform_link)] self.properties = [('Label', self.lmfdb_iso), ('Number of curves', str(ncurves)), ('Conductor', '\(%s\)' % N), ('CM', '%s' % self.CM), ('Rank', '\(%s\)' % self.rank), ('Graph', ''),(None, self.graph_link) ] self.downloads = [('Download q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=1000)), ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))] if self.lmfdb_iso == self.iso: self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso else: self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso) self.bread = [('Elliptic Curves', url_for("ecnf.index")), ('$\Q$', url_for(".rational_elliptic_curves")), ('%s' % N, url_for(".by_conductor", conductor=N)), ('%s' % iso, ' ')] self.code = {} self.code['show'] = {'sage':''} # use default show names self.code['class'] = {'sage':'E = EllipticCurve("%s1")\n'%(self.lmfdb_iso) + 'E.isogeny_class()\n'} self.code['curves'] = {'sage':'E.isogeny_class().curves'} self.code['rank'] = {'sage':'E.rank()'} self.code['q_eigenform'] = {'sage':'E.q_eigenform(10)'} self.code['matrix'] = {'sage':'E.isogeny_class().matrix()'} self.code['plot'] = {'sage':'E.isogeny_graph().plot(edge_labels=True)'}
def make_curve(self): # To start with the data fields of self are just those from the # databases. We reformat these, while computing some further (easy) # data about the curve on the fly. # Get data from databases: data = self.data = {} endodata = self.endodata = {} # Polish data from database before putting it into the data dictionary: disc = ZZ(self.disc_sign) * ZZ(self.disc_key[3:]) # to deal with disc_key, uncomment line above and comment line below #disc = ZZ(self.disc_sign) * ZZ(self.abs_disc) data['disc'] = disc data['cond'] = ZZ(self.cond) data['min_eqn'] = self.min_eqn data['min_eqn_display'] = list_to_min_eqn(self.min_eqn) data['disc_factor_latex'] = web_latex(factor(data['disc'])) data['cond_factor_latex'] = web_latex(factor(int(self.cond))) data['aut_grp'] = groupid_to_meaningful(self.aut_grp) data['geom_aut_grp'] = groupid_to_meaningful(self.geom_aut_grp) data['igusa_clebsch'] = [ZZ(a) for a in self.igusa_clebsch] data['igusa'] = igusa_clebsch_to_igusa(data['igusa_clebsch']) data['g2'] = igusa_to_g2(data['igusa']) data['ic_norm'] = normalize_invariants(data['igusa_clebsch'],[1,2,3,5]) data['igusa_norm'] = normalize_invariants(data['igusa'],[1,2,3,4,5]) data['ic_norm_factor_latex'] = [web_latex(zfactor(i)) for i in data['ic_norm']] data['igusa_norm_factor_latex'] = [web_latex(zfactor(j)) for j in data['igusa_norm']] data['num_rat_wpts'] = ZZ(self.num_rat_wpts) data['two_selmer_rank'] = ZZ(self.two_selmer_rank) if len(self.torsion) == 0: data['tor_struct'] = '\mathrm{trivial}' else: tor_struct = [ZZ(a) for a in self.torsion] data['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct]) # Data from old endomorphism functionality, used in isogeny class as # well. Calls the get_end_data function above. isogeny_class = db_g2c().isogeny_classes.find_one({'label' : isog_label(self.label)}) end_data = get_end_data(isogeny_class) for key in end_data.keys(): data[key] = end_data[key] # GL_2 statement over the base field endodata['gl2_statement_base'] = gl2_statement(self.factorsRR_base, r'\(\Q\)') # NOTE: In what follows there is some copying of code and data that is # stupid from the point of view of efficiency but likely better from # that of maintenance. # Endomorphism data over QQ: endodata['factorsQQ_base'] = self.factorsQQ_base endodata['factorsRR_base'] = self.factorsRR_base endodata['ring_base'] = self.ring_base endodata['endo_statement_base'] = \ """Endomorphism ring over \(\Q\):<br>""" + \ endo_statement(endodata['factorsQQ_base'], endodata['factorsRR_base'], endodata['ring_base'], r'') # Field of definition data: endodata['fod_label'] = self.fod_label endodata['fod_poly'] = intlist_to_poly(self.fod_coeffs) endodata['fod_statement'] = fod_statement(endodata['fod_label'], endodata['fod_poly']) # Endomorphism data over QQbar: endodata['factorsQQ_geom'] = self.factorsQQ_geom endodata['factorsRR_geom'] = self.factorsRR_geom endodata['ring_geom'] = self.ring_geom if self.fod_label != '1.1.1.1': endodata['endo_statement_geom'] = \ """Endomorphism ring over \(\overline{\Q}\):<br>""" + \ endo_statement(endodata['factorsQQ_geom'], endodata['factorsRR_geom'], endodata['ring_geom'], r'\overline{\Q}') # Full endomorphism lattice: endodata['lattice'] = self.lattice[1:len(self.lattice) - 1] if endodata['lattice']: endodata['lattice_statement_preamble'] = \ lattice_statement_preamble() endodata['lattice_statement'] = \ lattice_statement(endodata['lattice']) # Splitting field description: #endodata['is_simple_base'] = self.is_simple_base endodata['is_simple_geom'] = self.is_simple_geom endodata['spl_fod_label'] = self.spl_fod_label endodata['spl_fod_poly'] = intlist_to_poly(self.spl_fod_coeffs) endodata['spl_fod_statement'] = \ spl_fod_statement(endodata['is_simple_geom'], endodata['spl_fod_label'], endodata['spl_fod_poly']) # Isogeny factors: if not endodata['is_simple_geom']: endodata['spl_facs_coeffs'] = self.spl_facs_coeffs # This could be done non-uniformly as well... later. if len(self.spl_facs_labels) == len(self.spl_facs_coeffs): endodata['spl_facs_labels'] = self.spl_facs_labels else: endodata['spl_facs_labels'] = ['' for coeffs in self.spl_facs_coeffs] endodata['spl_facs_condnorms'] = self.spl_facs_condnorms endodata['spl_statement'] = \ spl_statement(endodata['spl_facs_coeffs'], endodata['spl_facs_labels'], endodata['spl_facs_condnorms']) x = self.label.split('.')[1] self.make_code_snippets() self.friends = [ ('Isogeny class %s' % isog_label(self.label), url_for(".by_double_iso_label", conductor = self.cond, iso_label = x)), ('L-function', url_for("l_functions.l_function_genus2_page", cond=self.cond,x=x)), ('Twists',url_for(".index_Q", ic0 = self.igusa_clebsch[0], ic1 = self.igusa_clebsch[1],ic2 = self.igusa_clebsch[2],ic3 = self.igusa_clebsch[3])), #('Twists2',url_for(".index_Q", igusa_clebsch = str(self.igusa_clebsch))) #doesn't work. #('Siegel modular form someday', '.') ] self.downloads = [ ('Download all stored data', '.')] iso = self.label.split('.')[1] num = '.'.join(self.label.split('.')[2:4]) self.plot = encode_plot(eqn_list_to_curve_plot(self.min_eqn)) self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot self.properties = [('Label', self.label), (None, self.plot_link), ('Conductor','%s' % self.cond), ('Discriminant', '%s' % data['disc']), ('Invariants', '%s </br> %s </br> %s </br> %s'% tuple(data['ic_norm'])), ('Sato-Tate group', '\(%s\)' % data['st_group_name']), ('\(%s\)' % data['real_geom_end_alg_name'][0],'\(%s\)' % data['real_geom_end_alg_name'][1]), ('\(\mathrm{GL}_2\)-type','%s' % data['is_gl2_type_name'])] self.title = "Genus 2 Curve %s" % (self.label) self.bread = [ ('Genus 2 Curves', url_for(".index")), ('$\Q$', url_for(".index_Q")), ('%s' % self.cond, url_for(".by_conductor", conductor=self.cond)), ('%s' % iso, url_for(".by_double_iso_label", conductor=self.cond, iso_label=iso)), ('Genus 2 curve %s' % num, url_for(".by_g2c_label", label=self.label))]