def test_height_and_fwhm_expression_evalution_in_builtin_models(): """Assert models do not throw an ZeroDivisionError.""" mod = models.GaussianModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9) params.update_constraints() mod = models.LorentzianModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9) params.update_constraints() mod = models.SplitLorentzianModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, sigma_r=1.0) params.update_constraints() mod = models.VoigtModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=1.0) params.update_constraints() mod = models.PseudoVoigtModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, fraction=0.5) params.update_constraints() mod = models.MoffatModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, beta=0.0) params.update_constraints() mod = models.Pearson7Model() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, expon=1.0) params.update_constraints() mod = models.StudentsTModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9) params.update_constraints() mod = models.BreitWignerModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, q=0.0) params.update_constraints() mod = models.LognormalModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9) params.update_constraints() mod = models.DampedOscillatorModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9) params.update_constraints() mod = models.DampedHarmonicOscillatorModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0) params.update_constraints() mod = models.ExponentialGaussianModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0) params.update_constraints() mod = models.SkewedGaussianModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0) params.update_constraints() mod = models.SkewedVoigtModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0, skew=0.0) params.update_constraints() mod = models.DoniachModel() params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0) params.update_constraints() mod = models.StepModel() for f in ('linear', 'arctan', 'erf', 'logistic'): params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, form=f) params.update_constraints() mod = models.RectangleModel() for f in ('linear', 'arctan', 'erf', 'logistic'): params = mod.make_params(amplitude=1.0, center1=0.0, sigma1=0.0, center2=0.0, sigma2=0.0, form=f) params.update_constraints()
def test_guess_modelparams(): """Tests for the 'guess' function of built-in models.""" x = np.linspace(-10, 10, 501) mod = models.ConstantModel() y = 6.0 + x*0.005 pars = mod.guess(y) assert_allclose(pars['c'].value, 6.0, rtol=0.01) mod = models.ComplexConstantModel(prefix='f_') y = 6.0 + x*0.005 + (4.0 - 0.02*x)*1j pars = mod.guess(y) assert_allclose(pars['f_re'].value, 6.0, rtol=0.01) assert_allclose(pars['f_im'].value, 4.0, rtol=0.01) mod = models.QuadraticModel(prefix='g_') y = -0.2 + 3.0*x + 0.005*x**2 pars = mod.guess(y, x=x) assert_allclose(pars['g_a'].value, 0.005, rtol=0.01) assert_allclose(pars['g_b'].value, 3.0, rtol=0.01) assert_allclose(pars['g_c'].value, -0.2, rtol=0.01) mod = models.PolynomialModel(4, prefix='g_') y = -0.2 + 3.0*x + 0.005*x**2 - 3.3e-6*x**3 + 1.e-9*x**4 pars = mod.guess(y, x=x) assert_allclose(pars['g_c0'].value, -0.2, rtol=0.01) assert_allclose(pars['g_c1'].value, 3.0, rtol=0.01) assert_allclose(pars['g_c2'].value, 0.005, rtol=0.1) assert_allclose(pars['g_c3'].value, -3.3e-6, rtol=0.1) assert_allclose(pars['g_c4'].value, 1.e-9, rtol=0.1) mod = models.GaussianModel(prefix='g_') y = lineshapes.gaussian(x, amplitude=2.2, center=0.25, sigma=1.3) y += np.random.normal(size=len(x), scale=0.004) pars = mod.guess(y, x=x) assert_allclose(pars['g_amplitude'].value, 3, rtol=2) assert_allclose(pars['g_center'].value, 0.25, rtol=1) assert_allclose(pars['g_sigma'].value, 1.3, rtol=1) mod = models.LorentzianModel(prefix='l_') pars = mod.guess(y, x=x) assert_allclose(pars['l_amplitude'].value, 3, rtol=2) assert_allclose(pars['l_center'].value, 0.25, rtol=1) assert_allclose(pars['l_sigma'].value, 1.3, rtol=1) mod = models.SplitLorentzianModel(prefix='s_') pars = mod.guess(y, x=x) assert_allclose(pars['s_amplitude'].value, 3, rtol=2) assert_allclose(pars['s_center'].value, 0.25, rtol=1) assert_allclose(pars['s_sigma'].value, 1.3, rtol=1) assert_allclose(pars['s_sigma_r'].value, 1.3, rtol=1) mod = models.VoigtModel(prefix='l_') pars = mod.guess(y, x=x) assert_allclose(pars['l_amplitude'].value, 3, rtol=2) assert_allclose(pars['l_center'].value, 0.25, rtol=1) assert_allclose(pars['l_sigma'].value, 1.3, rtol=1) mod = models.SkewedVoigtModel(prefix='l_') pars = mod.guess(y, x=x) assert_allclose(pars['l_amplitude'].value, 3, rtol=2) assert_allclose(pars['l_center'].value, 0.25, rtol=1) assert_allclose(pars['l_sigma'].value, 1.3, rtol=1)