コード例 #1
0
    def test_model_nan_policy(self):
        x = np.linspace(0, 10, 201)
        np.random.seed(0)
        y = gaussian(x, 10.0, 6.15, 0.8)
        y += gaussian(x, 8.0, 6.35, 1.1)
        y += gaussian(x, 0.25, 6.00, 7.5)
        y += np.random.normal(size=len(x), scale=0.5)

        y[55] = y[91] = np.nan
        mod = PseudoVoigtModel()
        params = mod.make_params(amplitude=20, center=5.5,
                                 sigma=1, fraction=0.25)
        params['fraction'].vary = False
        # with raise, should get a ValueError
        result = lambda: mod.fit(y, params, x=x, nan_policy='raise')
        self.assertRaises(ValueError, result)

        # with propagate, should get no error, but bad results
        result = mod.fit(y, params, x=x, nan_policy='propagate')
        self.assertTrue(result.success)
        self.assertTrue(np.isnan(result.chisqr))
        self.assertTrue(np.isnan(result.aic))
        self.assertFalse(result.errorbars)
        self.assertTrue(result.params['amplitude'].stderr is None)
        self.assertTrue(abs(result.params['amplitude'].value - 20.0) < 0.001)

        # with omit, should get good results
        result = mod.fit(y, params, x=x, nan_policy='omit')
        self.assertTrue(result.success)
        self.assertTrue(result.chisqr > 2.0)
        self.assertTrue(result.aic < -100)
        self.assertTrue(result.errorbars)
        self.assertTrue(result.params['amplitude'].stderr > 0.1)
        self.assertTrue(abs(result.params['amplitude'].value - 20.0) < 5.0)
        self.assertTrue(abs(result.params['center'].value - 6.0) < 0.5)
コード例 #2
0
ファイル: test_model.py プロジェクト: lmfit/lmfit-py
    def test_model_nan_policy(self):
        x = np.linspace(0, 10, 201)
        np.random.seed(0)
        y = gaussian(x, 10.0, 6.15, 0.8)
        y += gaussian(x, 8.0, 6.35, 1.1)
        y += gaussian(x, 0.25, 6.00, 7.5)
        y += np.random.normal(size=len(x), scale=0.5)

        y[55] = y[91] = np.nan
        mod = PseudoVoigtModel()
        params = mod.make_params(amplitude=20, center=5.5,
                                 sigma=1, fraction=0.25)
        params['fraction'].vary = False
        # with raise, should get a ValueError
        result = lambda: mod.fit(y, params, x=x, nan_policy='raise')
        self.assertRaises(ValueError, result)

        # with propagate, should get no error, but bad results
        result = mod.fit(y, params, x=x, nan_policy='propagate')
        self.assertTrue(result.success)
        self.assertTrue(np.isnan(result.chisqr))
        self.assertTrue(np.isnan(result.aic))
        self.assertFalse(result.errorbars)
        self.assertTrue(result.params['amplitude'].stderr is None)
        self.assertTrue(abs(result.params['amplitude'].value - 20.0) < 0.001)

        # with omit, should get good results
        result = mod.fit(y, params, x=x, nan_policy='omit')
        self.assertTrue(result.success)
        self.assertTrue(result.chisqr > 2.0)
        self.assertTrue(result.aic < -100)
        self.assertTrue(result.errorbars)
        self.assertTrue(result.params['amplitude'].stderr > 0.1)
        self.assertTrue(abs(result.params['amplitude'].value - 20.0) < 5.0)
        self.assertTrue(abs(result.params['center'].value - 6.0) < 0.5)
コード例 #3
0
ファイル: test_model.py プロジェクト: j-zimmermann/lmfit-py
    def test_model_nan_policy(self):
        """Tests for nan_policy with NaN values in the input data."""
        x = np.linspace(0, 10, 201)
        np.random.seed(0)
        y = gaussian(x, 10.0, 6.15, 0.8)
        y += gaussian(x, 8.0, 6.35, 1.1)
        y += gaussian(x, 0.25, 6.00, 7.5)
        y += np.random.normal(size=len(x), scale=0.5)

        # with NaN values in the input data
        y[55] = y[91] = np.nan
        mod = PseudoVoigtModel()
        params = mod.make_params(amplitude=20,
                                 center=5.5,
                                 sigma=1,
                                 fraction=0.25)
        params['fraction'].vary = False

        # with raise, should get a ValueError
        result = lambda: mod.fit(y, params, x=x, nan_policy='raise')
        msg = (
            'NaN values detected in your input data or the output of your '
            'objective/model function - fitting algorithms cannot handle this!'
        )
        self.assertRaisesRegex(ValueError, msg, result)

        # with propagate, should get no error, but bad results
        result = mod.fit(y, params, x=x, nan_policy='propagate')
        self.assertTrue(result.success)
        self.assertTrue(np.isnan(result.chisqr))
        self.assertTrue(np.isnan(result.aic))
        self.assertFalse(result.errorbars)
        self.assertTrue(result.params['amplitude'].stderr is None)
        self.assertTrue(abs(result.params['amplitude'].value - 20.0) < 0.001)

        # with omit, should get good results
        result = mod.fit(y, params, x=x, nan_policy='omit')
        self.assertTrue(result.success)
        self.assertTrue(result.chisqr > 2.0)
        self.assertTrue(result.aic < -100)
        self.assertTrue(result.errorbars)
        self.assertTrue(result.params['amplitude'].stderr > 0.1)
        self.assertTrue(abs(result.params['amplitude'].value - 20.0) < 5.0)
        self.assertTrue(abs(result.params['center'].value - 6.0) < 0.5)

        # with 'wrong_argument', should get a ValueError
        err_msg = r"nan_policy must be 'propagate', 'omit', or 'raise'."
        with pytest.raises(ValueError, match=err_msg):
            mod.fit(y, params, x=x, nan_policy='wrong_argument')
コード例 #4
0
def calc_center_pseudoVoigt(vx,vy):
    mod     = PseudoVoigtModel()
    y       = vy
    pars    = mod.guess(y, x=vx)
    out     = mod.fit(y, pars, x=vx)
    center  = out.best_values['center']
    return center
コード例 #5
0
def voigt(x, y):

	# Voigt fit to a curve

    x_shifted = x - x.min() # Shifting to 0
    y_shifted = y - y.min() # Shifting to 0    
    mod = PseudoVoigtModel() # Setting model type
    pars = mod.guess(y_shifted, x=x_shifted) # Estimating fit
    out = mod.fit(y_shifted, pars, x=x_shifted) # Fitting fit
    # print(out.fit_report(min_correl=0.25)) # Outputting best fit results
    print("Voigt FWHM = ", out.params['fwhm'].value) # Outputting only FWHM
    out.plot() # Plotting fit
コード例 #6
0
def fit_one_Psudo_Voigt(x_lst,y_lst):
    '''
    Fits one Pseudo Voigt returns the 
    results object
    '''
    mod = PseudoVoigtModel(independent_vars=['x'],nan_policy='raise')
    
    x_lst = np.asarray(x_lst)
    y_lst = np.asarray(y_lst)
    # Guess good values computer
    mod.guess(y_lst,x = x_lst)
    
    result = mod.fit(y_lst, x = x_lst)
    
    return result
コード例 #7
0
def center_psi(file_name):
    #print(file_name)
    psi, vx, vy = read_file(file_name)
    vy = processing_of_data(psi,vx,vy)
    legenda = file_name.split('/')[-1]
    #plt.grid()
    #plt.legend(loc=0)
    #import pdb; pdb.set_trace()
    plt.plot(vx,vy,label=legenda)
    mod = PseudoVoigtModel()
    y=vy
    pars = mod.guess(y, x=vx)
    out  = mod.fit(y, pars, x=vx)
    center =out.best_values['center']
    print('center: {} <--> psi: {}'.format(center,psi))
    return psi, center
コード例 #8
0
ファイル: test_model.py プロジェクト: martin-majlis/lmfit-py
def test_figure_title_using_title_keyword_argument(peakdata):
    """Test setting figure title using title keyword argument."""
    x, y = peakdata
    pvmodel = PseudoVoigtModel()
    params = pvmodel.guess(y, x=x)
    result = pvmodel.fit(y, params, x=x)

    ax = result.plot_fit(title='test')
    assert ax.axes.get_title() == 'test'

    ax = result.plot_residuals(title='test')
    assert ax.axes.get_title() == 'test'

    fig, _ = result.plot(title='test')
    assert fig.axes[0].get_title() == 'test'
    assert fig.axes[1].get_title() == ''  # no title for fit subplot
コード例 #9
0
ファイル: test_model.py プロジェクト: martin-majlis/lmfit-py
def test_figure_default_title(peakdata):
    """Test default figure title."""
    x, y = peakdata
    pvmodel = PseudoVoigtModel()
    params = pvmodel.guess(y, x=x)
    result = pvmodel.fit(y, params, x=x)

    ax = result.plot_fit()
    assert ax.axes.get_title() == 'Model(pvoigt)'

    ax = result.plot_residuals()
    assert ax.axes.get_title() == 'Model(pvoigt)'

    fig, _ = result.plot()
    assert fig.axes[0].get_title() == 'Model(pvoigt)'  # default model.name
    assert fig.axes[1].get_title() == ''  # no title for fit subplot
コード例 #10
0
ファイル: test_model.py プロジェクト: martin-majlis/lmfit-py
def test_priority_setting_figure_title(peakdata):
    """Test for setting figure title: title keyword argument has priority."""
    x, y = peakdata
    pvmodel = PseudoVoigtModel()
    params = pvmodel.guess(y, x=x)
    result = pvmodel.fit(y, params, x=x)

    ax = result.plot_fit(ax_kws={'title': 'ax_kws'}, title='test')
    assert ax.axes.get_title() == 'test'

    ax = result.plot_residuals(ax_kws={'title': 'ax_kws'}, title='test')
    assert ax.axes.get_title() == 'test'

    fig, _ = result.plot(ax_res_kws={'title': 'ax_res_kws'}, title='test')
    assert fig.axes[0].get_title() == 'test'
    assert fig.axes[1].get_title() == ''

    fig, _ = result.plot(ax_fit_kws={'title': 'ax_fit_kws'}, title='test')
    assert fig.axes[0].get_title() == 'test'
    assert fig.axes[1].get_title() == ''
コード例 #11
0
ファイル: test_model.py プロジェクト: martin-majlis/lmfit-py
def test_figure_title_using_title_to_ax_kws(peakdata):
    """Test setting figure title by supplying ax_{fit,res}_kws."""
    x, y = peakdata
    pvmodel = PseudoVoigtModel()
    params = pvmodel.guess(y, x=x)
    result = pvmodel.fit(y, params, x=x)

    ax = result.plot_fit(ax_kws={'title': 'ax_kws'})
    assert ax.axes.get_title() == 'ax_kws'

    ax = result.plot_residuals(ax_kws={'title': 'ax_kws'})
    assert ax.axes.get_title() == 'ax_kws'

    fig, _ = result.plot(ax_res_kws={'title': 'ax_res_kws'})
    assert fig.axes[0].get_title() == 'ax_res_kws'
    assert fig.axes[1].get_title() == ''

    fig, _ = result.plot(ax_fit_kws={'title': 'ax_fit_kws'})
    assert fig.axes[0].get_title() == 'Model(pvoigt)'  # default model.name
    assert fig.axes[1].get_title() == ''  # no title for fit subplot
コード例 #12
0
ファイル: xps_analysis.py プロジェクト: proscrite/sabatsw
def fit_voigt(xp: XPS_experiment,
              region: str,
              prefix: str = 'v_',
              pars: list = None,
              bounds: list = None,
              ax=None,
              flag_plot: bool = True):
    """General method for fitting voigt model
        Input
        ----------
        xp : class XPS_experiment
            XPS data
        region : str
            core level name
        pars, bounds : list
            initial guess of the fit parameters and bounds. If unspecified, guessed automatically
        Returns
        -----------
        fitv : lmfit.model
            fit result to Voigt model
    """
    from lmfit.models import PseudoVoigtModel, GaussianModel

    x = xp.dfx[region].dropna().energy
    y = xp.dfx[region].dropna().counts

    mod = PseudoVoigtModel(prefix=prefix)
    if pars == None:
        pars = mod.guess(y, x=x)
        pars[prefix + 'sigma'].set(value=1)  # Usually guessed wrong anyway
        pars[prefix + 'fraction'].set(value=0.2, min=0.15, max=0.20)

    fitv = mod.fit(y, pars, x=x)
    xp.fit.update({region: fitv})

    if flag_plot:
        hatchplot_fit(xp, region, fitv, ax=ax, plot_comps=True)
    return fitv
コード例 #13
0
def fittingPseudoVoigt(x, y):  #fits a pseudovoigt curve
    mod = PseudoVoigtModel()
    pars = mod.guess(y, x=x)
    out = mod.fit(y, pars, x=x)
    print(out.fit_report(min_correl=0.25))
    return out.best_fit
コード例 #14
0
# get point-spread function data
psf = pu.load_muv_point_spread_function()

# set model x and y variables
detector_pixels = np.arange(len(psf))
detector_pixel_edges = np.linspace(0, len(psf) - 1, len(psf) + 1)

# initialize model
model = PseudoVoigtModel()

# use model's built-in initial parameters guessing option
initial_parameters = model.guess(psf, x=detector_pixels)

# fit the model to the point-spread function data
result = model.fit(psf, initial_parameters, x=detector_pixels)
params = result.params
parnames = sorted(params)

# make a figure and axes
fig, axes = plt.subplots(2,
                         1,
                         figsize=(5, 4),
                         sharex=True,
                         gridspec_kw={'height_ratios': [4, 1]},
                         constrained_layout=True)

# plot the IUVS data
axes[0].step(detector_pixel_edges,
             np.concatenate((psf, [psf[-1]])),
             where='post',
コード例 #15
0
ファイル: xps_analysis.py プロジェクト: proscrite/sabatsw
def fit_double_voigt(xp: XPS_experiment,
                     region: str,
                     pars: list = None,
                     bounds: list = None,
                     sepPt: float = None,
                     frac: float = None,
                     lb: str = None,
                     ax=None,
                     flag_plot: bool = True,
                     plot_comps: bool = False,
                     DEBUG: bool = False):
    """Fitting double voigt model
        Input
        ----------
        xp : class XPS_experiment
            XPS data
        region : str
            core level name
        pars, bounds : list
            initial guess of the fit parameters and bounds. If unspecified, guessed automatically
        sepPt : float
            separation point in energy between the two peaks. If unspecified guessed automatically
        flag_plot, DEBUG : bool
            flags to plot intermediate and final fit results
        Returns
        -----------
        fitv : lmfit.model
            fit result to Voigt model
    """
    from lmfit.models import PseudoVoigtModel

    x = xp.dfx[region].dropna().energy
    y = xp.dfx[region].dropna().counts
    if sepPt == None: sepPt = find_separation_point(x, y)

    x1 = x[x < sepPt].values
    x2 = x[x > sepPt].values
    y1 = y[x < sepPt].values
    y2 = y[x > sepPt].values

    mod1 = PseudoVoigtModel(prefix='v1_')
    mod2 = PseudoVoigtModel(prefix='v2_')
    if pars == None:
        pars1 = mod1.guess(y1, x=x1)
        pars1['v1_sigma'].set(value=1)  # Usually guessed wrong anyway
        pars2 = mod2.guess(y2, x=x2)
        pars2['v2_sigma'].set(value=1)  # Usually guessed wrong anyway

    if frac != None:
        pars1['v1_fraction'].set(value=frac, vary=False)
        pars2['v2_fraction'].set(value=frac, vary=False)

    mod = mod1 + mod2
    pars = mod.make_params()
    pars.update(pars1)
    pars.update(pars2)
    if DEBUG:  # Fit & plot individual components separately
        fit1 = mod1.fit(y1, x=x1, params=pars1)
        fit2 = mod2.fit(y2, x=x2, params=pars2)
        plot_fit_result(xp, region, fit1)
        plot_fit_result(xp, region, fit2)

    fitv = mod.fit(y, pars, x=x)
    xp.fit.update({region: fitv})

    if flag_plot:
        hatchplot_fit(xp, region, fitv, ax=ax, plot_comps=True)
    return fitv