コード例 #1
0
    def split_peak_params(self, peak_result):

        amplitude = peak_result.params['amplitude'].value
        decay = peak_result.params['decay'].value
        skew = peak_result.params['skew'].value
        decay_right = 2**(-skew) * decay
        decay_left = 2**skew * decay
        baseline = peak_result.params['baseline'].value
        floor = peak_result.params['floor'].value
        ceiling = peak_result.params['ceiling'].value

        peak_params_left = lmfit.Parameters()
        peak_params_left['amplitude'] = lmfit.Parameter(value=amplitude, vary=False)
        peak_params_left['decay'] = lmfit.Parameter(value=decay_left, vary=False)
        peak_params_left['baseline'] = lmfit.Parameter(value=baseline, vary=False)
        peak_params_left['floor'] = lmfit.Parameter(value=floor, vary=False)
        peak_params_left['ceiling'] = lmfit.Parameter(value=ceiling, vary=False)

        peak_params_right = lmfit.Parameters()
        peak_params_right['amplitude'] = lmfit.Parameter(value=amplitude, vary=False)
        peak_params_right['decay'] = lmfit.Parameter(value=decay_right, vary=False)
        peak_params_right['baseline'] = lmfit.Parameter(value=baseline, vary=False)
        peak_params_right['floor'] = lmfit.Parameter(value=floor, vary=False)
        peak_params_right['ceiling'] = lmfit.Parameter(value=ceiling, vary=False)

        return peak_params_left, peak_params_right
コード例 #2
0
    def __init__(self, data_modelers):

        self.parameters = []
        for i_shot in data_modelers:
            Mod = data_modelers[i_shot]

            for i_N in range(3):
                p = Mod.PAR.Nabc[i_N]
                lmfit_p = lmfit.Parameter("rank%d_shot%d_Nabc%d" % (COMM.rank, i_shot, i_N),
                                          min=p.minval, max=p.maxval, vary=True, value=p.init,
                                          user_data=[p.center, p.beta])
                self.parameters.append(lmfit_p)

            for i_rot in range(3):
                p = Mod.PAR.RotXYZ_params[i_rot]
                lmfit_p = lmfit.Parameter("rank%d_shot%d_RotXYZ%d" % (COMM.rank, i_shot, i_rot),
                                          min=p.minval, max=p.maxval, vary=True, value=p.init,
                                          user_data=[p.center, p.beta])
                self.parameters.append(lmfit_p)

            p = Mod.PAR.Scale
            lmfit_p = lmfit.Parameter("rank%d_shot%d_Scale" % (COMM.rank, i_shot),
                                      min=p.minval, max=p.maxval, vary=True, value=p.init,
                                      user_data=[p.center, p.beta])
            self.parameters.append(lmfit_p)

            for i_uc in range(len(Mod.PAR.ucell)):
                p = Mod.PAR.ucell[i_uc]
                lmfit_p = lmfit.Parameter("rank%d_shot%d_Ucell%d" % (COMM.rank, i_shot, i_uc),
                                          min=p.minval, max=p.maxval, vary=True, value=p.init,
                                          user_data=[p.center, p.beta])
                self.parameters.append(lmfit_p)
コード例 #3
0
def parameters():
    """Initialize a Parameters class for tests."""
    pars = lmfit.Parameters()
    pars.add(
        lmfit.Parameter(name='a',
                        value=10.0,
                        vary=True,
                        min=-100.0,
                        max=100.0,
                        expr=None,
                        brute_step=5.0,
                        user_data=1))
    pars.add(
        lmfit.Parameter(name='b',
                        value=0.0,
                        vary=True,
                        min=-250.0,
                        max=250.0,
                        expr="2.0*a",
                        brute_step=25.0,
                        user_data=2.5))
    exp_attr_values_A = ('a', 10.0, True, -100.0, 100.0, None, 5.0, 1)
    exp_attr_values_B = ('b', 20.0, False, -250.0, 250.0, "2.0*a", 25.0, 2.5)
    assert_parameter_attributes(pars['a'], exp_attr_values_A)
    assert_parameter_attributes(pars['b'], exp_attr_values_B)
    return pars, exp_attr_values_A, exp_attr_values_B
コード例 #4
0
def tip_line_fit(point1, point2, image, length_spacing, line_thickness, width_spacing):
    """Fit the tip of a line to a complementary error function, 1 - erf(x).

    Args:
      point1: 1D array or float.
      point2: 1D array or float.
      image: 2D array.
      length_spacing: float, `get_thick_line()`.
      line_thickness: float, `get_thick_line()`.
      width_spacing: float, `get_thick_line()`.
    """

    profile_parameters = {}
    profile_parameters["length_spacing"] = length_spacing  # pixel
    profile_parameters["line_thickness"] = line_thickness  # pixel
    profile_parameters["width_spacing"] = width_spacing  # pixel
    profile_parameters["normalized_intensities"] = True

    x_profile, y_profile = line_profile(image, point1, point2, **profile_parameters)

    def errorfunction(x, mu, sigma, mt, bg):
        # pylint: disable=no-member
        return bg + (0.5 * mt * special.erfc((x - mu) / (np.sqrt(2) * sigma)))

    model = lmfit.Model(errorfunction)

    fit_params = {}
    fit_params["mu"] = lmfit.Parameter("mu", value=x_profile[-1] / 2, min=0, max=x_profile[-1])
    fit_params["sigma"] = lmfit.Parameter("sigma", value=1, vary=True, min=0, max=x_profile[-1])
    fit_params["mt"] = lmfit.Parameter("mt", value=1, vary=True, min=0)
    fit_params["bg"] = lmfit.Parameter("bg", value=1, vary=True, min=0)
    fit_result = model.fit(y_profile.copy(), x=x_profile.copy(), **fit_params)

    return x_profile, y_profile, fit_result, errorfunction
コード例 #5
0
ファイル: test_parameters.py プロジェクト: xli2522/lmfit-py
def test_dumps_loads_parameters_usersyms():
    """Test for dumps/loads methods for a Parameters class with usersyms."""
    def half(x):
        return 0.5 * x

    pars = lmfit.Parameters(usersyms={"half": half, 'my_func': np.sqrt})
    pars.add(lmfit.Parameter(name='a', value=9.0, min=-100.0, max=100.0))
    pars.add(lmfit.Parameter(name='b', value=100.0, min=-250.0, max=250.0))
    pars.add("c", expr="half(b) + my_func(a)")

    dumps = pars.dumps()
    assert isinstance(dumps, str)
    assert '"half": {' in dumps
    assert '"my_func": {' in dumps

    newpars = lmfit.Parameters().loads(dumps)
    assert 'half' in newpars._asteval.symtable
    assert 'my_func' in newpars._asteval.symtable
    assert_allclose(newpars['a'].value, 9.0)
    assert_allclose(newpars['b'].value, 100.0)

    # within the py.test environment the encoding of the function 'half' does
    # not work correctly as it is changed from <function half at 0x?????????>"
    # to "<function test_dumps_loads_parameters_usersyms.<locals>.half at 0x?????????>
    # This result in the "importer" to be set to None and the final "decode4js"
    # does not do the correct thing.
    #
    # Of note, this is only an issue within the py.test framework and it DOES
    # work correctly in a normal Python interpreter. Also, it isn't an issue
    # when DILL is used, so in that case the two asserts below will pass.
    if lmfit.jsonutils.HAS_DILL:
        assert newpars == pars
        assert_allclose(newpars['c'].value, 53.0)
コード例 #6
0
        def setup():
            fig, ax = plt.subplots()
            self.ax = ax
            fig.canvas.set_window_title('Peakup')
            self.ax.clear()
            # Setup LiveCallbacks
            self.live_plot = LivePlot(scaler,
                                      dcm_c2_pitch_name,
                                      linestyle='',
                                      marker='*',
                                      color='C0',
                                      label='raw',
                                      ax=self.ax,
                                      use_teleporter=False)

            # Setup LiveFit
            # f_gauss(x, A, sigma, x0, y0, m)
            model = lmfit.Model(f_gauss, ['x'])
            init_guess = {
                'A': lmfit.Parameter('A', 100000, min=0),
                'sigma': lmfit.Parameter('sigma', 0.001, min=0),
                'x0': lmfit.Parameter('x0', pitch_guess),
                'y0': lmfit.Parameter('y0', 0, min=0),
                'm': lmfit.Parameter('m', 0, vary=False)
            }
            self.lf = LiveFit(model, scaler, {'x': dcm_c2_pitch_name},
                              init_guess)
            self.lpf = LiveFitPlot(self.lf,
                                   ax=self.ax,
                                   color='r',
                                   use_teleporter=False,
                                   label='Gaussian fit')
コード例 #7
0
def test_init_bounds():
    """Tests to make sure that initial bounds are consistent.

    Only for specific cases not tested above with the initializations of the
    Parameter class.

    """
    # test 1: min > max; should swap min and max
    par = lmfit.Parameter(name='a', value=0.0, min=10.0, max=-10.0)
    assert par.min == -10.0
    assert par.max == 10.0

    # test 2: min == max; should raise a ValueError
    msg = r"Parameter 'a' has min == max"
    with pytest.raises(ValueError, match=msg):
        par = lmfit.Parameter(name='a', value=0.0, min=10.0, max=10.0)

    # FIXME: ideally this should be impossible to happen ever....
    # perhaps we should add a  setter method for MIN and MAX as well?
    # test 3: max or min is equal to None
    par.min = None
    par._init_bounds()
    assert par.min == -np.inf

    par.max = None
    par._init_bounds()
    assert par.max == np.inf
コード例 #8
0
def test_Parameter_no_name():
    """Test for Parameter name, now required positional argument."""
    msg = r"missing 1 required positional argument: 'name'"
    msg_PY2 = r"__init__()"
    if six.PY2:
        with pytest.raises(TypeError, match=msg_PY2):
            lmfit.Parameter()
    else:
        with pytest.raises(TypeError, match=msg):
            lmfit.Parameter()
コード例 #9
0
def find_max_like(data, sample, seed=None):
    '''
    Uses lmfit to approximate the highest likelihood parameter values.
    We use likelihood instead of posterior because lmfit requires an array of residuals.

    Prameters
    ---------
    data: Spectrum object
        experimental dataset
    sample: Sample object
        information about the sample that produced data_spectrum
    phi_guess: float
        user's best guess of the expected volume fraction
    seed: int (optional)
        if specified, passes the seed through to the MC multiple scatterin calculation

    Returns
    -------
    theta: 3 or 5 -tuple
        best fit (phi, l0, l1) or (phi, l0, l1, l0, l1) as floats
    '''
    def resid(params):
        if 'reflectance' in data.keys() and 'transmittance' in data.keys():
            theta = (params['phi'], params['l0_r'], params['l1_r'],
                     params['l0_t'], params['l1_t'])
        elif 'reflectance' in data.keys():
            theta = (params['phi'], params['l0_r'], params['l1_r'])
        else:
            theta = (params['phi'], params['l0_t'], params['l1_t'])

        theory_spect = calc_model_spect(sample, theta, seed)
        resid_spect = calc_resid_spect(data, theory_spect)

        resid = np.concatenate([
            resid_spect.reflectance / resid_spect.sigma_r,
            resid_spect.transmittance / resid_spect.sigma_t
        ])
        return resid[np.isfinite(resid)]

    fit_params = lmfit.Parameters()
    fit_params['phi'] = lmfit.Parameter(value=.55, min=min_phi, max=max_phi)

    if 'reflectance' in data.keys():
        fit_params['l0_r'] = lmfit.Parameter(value=0, min=min_l0, max=max_l0)
        fit_params['l1_r'] = lmfit.Parameter(value=0, min=min_l1, max=max_l1)

    if 'transmittance' in data.keys():
        fit_params['l0_t'] = lmfit.Parameter(value=0, min=min_l0, max=max_l0)
        fit_params['l1_t'] = lmfit.Parameter(value=0, min=min_l1, max=max_l1)

    fit_params = lmfit.minimize(resid, fit_params).params
    return tuple(fit_params.valuesdict().values())
コード例 #10
0
 def split_peak_params(self, peak_result):
     amplitude = peak_result.params['amplitude'].value
     decay = peak_result.params['decay'].value
     baseline = peak_result.params['baseline'].value
     floor = peak_result.params['floor'].value
     ceiling = peak_result.params['ceiling'].value
     half_peak_params = lmfit.Parameters()
     half_peak_params['amplitude'] = lmfit.Parameter(value=amplitude, vary=False)
     half_peak_params['decay'] = lmfit.Parameter(value=decay, vary=False)
     half_peak_params['baseline'] = lmfit.Parameter(value=baseline, vary=False)
     half_peak_params['floor'] = lmfit.Parameter(value=floor, vary=False)
     half_peak_params['ceiling'] = lmfit.Parameter(value=ceiling, vary=False)
     return half_peak_params, half_peak_params
コード例 #11
0
ファイル: test_parameters.py プロジェクト: xli2522/lmfit-py
def test_parameters_add_many():
    """Tests for add_many method."""
    a = lmfit.Parameter('a', 1)
    b = lmfit.Parameter('b', 2)

    par = lmfit.Parameters()
    par.add_many(a, b)

    par_with_tuples = lmfit.Parameters()
    par_with_tuples.add_many(('a', 1), ('b', 2))

    assert list(par.keys()) == ['a', 'b']
    assert par == par_with_tuples
コード例 #12
0
def fit_g2(tau,
           g2,
           g2_error,
           bgfactor=0.1,
           tau0=0,
           t_antibunch=1e-9,
           a_bunch=[],
           t_bunch=[],
           sigma=None,
           tau0_fixed=False):
    # create fit parameters
    params = _lmfit.Parameters()
    params.add('tau0', value=tau0)
    if tau0_fixed:
        params['tau0'].set(vary=False)
    params.add('bgfactor', value=bgfactor, min=0)
    params.add('t_antibunch', value=t_antibunch)
    a_params = [
        _lmfit.Parameter('A_' + str(i), value=a, min=0)
        for i, a in enumerate(a_bunch)
    ]
    t_params = [
        _lmfit.Parameter('t_' + str(i), value=t) for i, t in enumerate(t_bunch)
    ]
    for p in (a_params + t_params):
        params.add(p)
    params.add('g2_0',
               expr='( bgfactor**2 + 2*bgfactor ) / ( 1 + bgfactor )**2')

    # wrap g2_normalized in order to make it compatible to lmfit.Model
    def g2_wrapped(tau, **kwargs):
        tau0 = kwargs['tau0']
        bgfactor = kwargs['bgfactor']
        t_antibunch = kwargs['t_antibunch']
        a_bunch = [kwargs[a.name] for a in a_params]
        t_bunch = [kwargs[t.name] for t in t_params]
        if sigma is None:
            return g2_bgfactor(tau, tau0, bgfactor, t_antibunch, a_bunch,
                               t_bunch)
        else:
            return g2_bgfactor_gauss(tau, tau0, bgfactor, sigma, t_antibunch,
                                     a_bunch, t_bunch)

    model = _lmfit.Model(g2_wrapped, independent_vars=['tau'])
    result = model.fit(
        tau=tau,
        data=g2,
        params=params,
        weights=1 / g2_error,
    )
    return result
コード例 #13
0
def parameter_df_to_lmfit(df):
    """ Converts a dataframe of model parameters to an LMFit 'Parameters' object.
        All parameters are initialised with 'parameter_type=model_parameter' and 
        'vary=True'. The provided dataframe should be (a subset of) the dataframe
        returned by get_double_parameters_as_dataframe().
        
        NOTE: At present, you need to manually add a column named 'short_name' to 
        this dataframe, to succinctly identify each parameter (this is not 
        currently defined in the 'dataset' object itself).
    """
    params = lmfit.Parameters()

    for idx, row in df.iterrows():
        param = lmfit.Parameter(row['short_name'],
                                value=row['initial_value'],
                                min=row['min_value'],
                                max=row['max_value'],
                                vary=True,
                                user_data={
                                    'index': row['index'],
                                    'name': row['name'],
                                    'parameter_type': 'model_parameter',
                                })
        params.add(param)

    return params
コード例 #14
0
ファイル: LinComb.py プロジェクト: soonready/PrestoPronto
 def __init__(self,
              label,
              x,
              y,
              x0=None,
              value=None,
              fix=False,
              mini=None,
              maxi=None,
              expr=None,
              auto=False):
     self.label = label
     self.param = lmfit.Parameter(self.label,
                                  value=value,
                                  vary=not (fix),
                                  expr=expr,
                                  min=mini,
                                  max=maxi)
     self.x = x
     self.y = y
     self.x0 = x0
     self.auto = value
     if x0 is None:
         pass
     elif np.array_equal(self.x, x0):
         self.y0 = self.y
     else:
         self.spline = interpolate.splrep(x, y, s=0)
         self.y0 = interpolate.splev(self.x0, self.spline, der=0, ext=2)
コード例 #15
0
ファイル: test_parameters.py プロジェクト: xli2522/lmfit-py
def test_parameters_update(parameters):
    """Tests for updating a Parameters class."""
    pars, exp_attr_values_A, exp_attr_values_B = parameters

    msg = r"'test' is not a Parameters object"
    with pytest.raises(ValueError, match=msg):
        pars.update('test')

    pars2 = lmfit.Parameters()
    pars2.add(
        lmfit.Parameter(name='c',
                        value=7.0,
                        vary=True,
                        min=-70.0,
                        max=70.0,
                        expr=None,
                        brute_step=0.7,
                        user_data=7))
    exp_attr_values_C = ('c', 7.0, True, -70.0, 70.0, None, 0.7, 7)

    pars_updated = pars.update(pars2)

    assert_parameter_attributes(pars_updated['a'], exp_attr_values_A)
    assert_parameter_attributes(pars_updated['b'], exp_attr_values_B)
    assert_parameter_attributes(pars_updated['c'], exp_attr_values_C)
コード例 #16
0
    def estimate_parameters(self) -> np.array:
        """Estimate values of unknown parameters by setting up and solving a LS optimization.

        Returns:
            np.array: Distance residuals. The distances are signed point-to-plane distances.
        """
        # Define rigid body parameters for lmfit
        params = lmfit.Parameters()
        for parameter in fields(self._rbp):

            initial_value = getattr(self._rbp, parameter.name).initial_value
            observed_value = getattr(self._rbp, parameter.name).observed_value
            observation_weight = getattr(self._rbp,
                                         parameter.name).observation_weight
            vary = np.isfinite(observation_weight)

            params[parameter.name] = lmfit.Parameter(
                name=parameter.name,
                value=initial_value,
                vary=vary,
                user_data={
                    "observed_value":
                    observed_value,
                    "observation_weight":
                    observation_weight,
                    "is_observed":
                    observation_weight > 0 and np.isfinite(observation_weight),
                },
            )

        # Optimize with lmfit
        self._optim_results = lmfit.minimize(
            SimpleICPOptimization.__residuals,
            params,
            method="least_squares",
            args=(
                self._cp,
                self._distance_weights,
            ),
        )

        # Save estimated values
        estimated_values = [
            self._optim_results.params["alpha1"].value,
            self._optim_results.params["alpha2"].value,
            self._optim_results.params["alpha3"].value,
            self._optim_results.params["tx"].value,
            self._optim_results.params["ty"].value,
            self._optim_results.params["tz"].value,
        ]
        self._rbp.set_parameter_attributes_from_list("estimated_value",
                                                     estimated_values)

        # Compute unweighted distance residuals
        weighted_distance_residuals = self._optim_results.residual[
            0:self._cp.num_corr_pts - 1]
        unweighted_distance_residuals = (weighted_distance_residuals /
                                         self._distance_weights)

        return unweighted_distance_residuals
コード例 #17
0
    def __deepcopy__(self, memo):
        """Parameters deepcopy needs to make sure that
        asteval is available and that all individula
        parameter objects are copied"""
        _pars = SATLASParameters(asteval=None)

        # find the symbols that were added by users, not during construction
        sym_unique = self._asteval.user_defined_symbols()
        unique_symbols = {
            key: deepcopy(self._asteval.symtable[key], memo)
            for key in sym_unique
        }
        _pars._asteval.symtable.update(unique_symbols)

        # we're just about to add a lot of Parameter objects to the newly
        parameter_list = []
        for key, par in self.items():
            if isinstance(par, lm.Parameter):
                param = lm.Parameter(name=par.name,
                                     value=par.value,
                                     min=par.min,
                                     max=par.max)
                param.vary = par.vary
                param.stderr = par.stderr
                param.correl = par.correl
                param.init_value = par.init_value
                param.expr = par.expr
                parameter_list.append(param)

        _pars.add_many(*parameter_list)
        _pars._prefix = self._prefix
        return _pars
コード例 #18
0
    def plot_train_fits(self, plot_grid):
        train_responses = self.train_responses
        pulse_offsets = self.pulse_offsets
        results = self.train_fit_results
        train_plots = plot_grid

        #dyn_plots = PlotGrid()
        #dyn_plots.set_shape(len(results), 1)
        models = {4: PspTrain(4), 8: PspTrain(8)}
        for i, stim_params in enumerate(results.keys()):
            fits = results[stim_params]
            amps = []
            for j, fit in enumerate(fits):
                fit, n_psp = fit
                print "-----------"
                print stim_params
                print fit
                import lmfit
                params = {
                    k: lmfit.Parameter(name=k, value=v)
                    for k, v in fit.items()
                }
                tvals = train_responses[stim_params][j].responses[
                    0].time_values
                model = models[n_psp]
                train_plots[i, j].plot(tvals,
                                       model.eval(x=tvals, params=params),
                                       pen='b',
                                       antialias=True)
コード例 #19
0
    def _mkParameterDct(self, parameterCollection):
        """
        The dictionary that relates parameter names to models.
        Where there are multiple occurrences of the same parameter,
        the min, max, and value of the parameter are adjusted.

        Returns
        -------
        dict
            key: str (parameter name)
            value: list-modelName
        """
        parameterDct = {}
        countDct = {}
        for parameters in parameterCollection:
            for parameterName, parameter in parameters.items():
                if not parameterName in parameterDct.keys():
                    newParameter = lmfit.Parameter(name=parameter.name,
                                                   min=parameter.min,
                                                   max=parameter.max,
                                                   value=parameter.value)
                    parameterDct[parameterName] = newParameter
                    countDct[parameterName] = 1
                else:
                    # Adjust parameter values
                    curParameter = parameterDct[parameterName]
                    curParameter.set(min=min(curParameter.min, parameter.min))
                    curParameter.set(max=max(curParameter.max, parameter.max))
                    curParameter.set(value=curParameter.value +
                                     parameter.value)
                    countDct[parameterName] += 1
        for parameterName, parameter in parameterDct.items():
            parameter.set(value=parameter.value / countDct[parameterName])
        return parameterDct
コード例 #20
0
def parameter():
    """Initialize parameter for tests."""
    param = lmfit.Parameter(name='a', value=10.0, vary=True, min=-100.0,
                            max=100.0, expr=None, brute_step=5.0, user_data=1)
    expected_attribute_values = ('a', 10.0, True, -100.0, 100.0, None, 5.0, 1)
    assert_parameter_attributes(param, expected_attribute_values)
    return param, expected_attribute_values
コード例 #21
0
    def __init__(self, amplitude, sigma, skew, baseline, floor, ceiling, null, peak_limit_frc=.2):

        # initialise null model
        null_model = lmfit.models.ConstantModel()
        null_params = lmfit.Parameters()
        null_params['c'] = null

        # initialise peak model
        peak_model = lmfit.Model(skewed_gaussian)
        peak_params = lmfit.Parameters()
        peak_params['center'] = lmfit.Parameter(value=0, vary=False)
        peak_params['amplitude'] = amplitude
        peak_params['sigma'] = sigma
        peak_params['skew'] = skew
        peak_params['baseline'] = baseline
        peak_params['ceiling'] = ceiling
        peak_params['floor'] = floor

        # initialise flank model
        half_peak_model = lmfit.Model(gaussian)

        super(SkewedGaussianPeakFitter, self).__init__(
            null_model=null_model, null_params=null_params, peak_model=peak_model,
            peak_params=peak_params, half_peak_model=half_peak_model, peak_limit_frc=peak_limit_frc
        )
コード例 #22
0
def test_live_fit_plot(fresh_RE):
    RE = fresh_RE
    try:
        import lmfit
    except ImportError:
        raise pytest.skip('requires lmfit')

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0)**2 / (2 * sigma**2))

    model = lmfit.Model(gaussian)
    init_guess = {
        'A': 2,
        'sigma': lmfit.Parameter('sigma', 3, min=0),
        'x0': -0.2
    }
    livefit = LiveFit(model,
                      'det', {'x': 'motor'},
                      init_guess,
                      update_every=50)
    lfplot = LiveFitPlot(livefit, color='r')
    lplot = LivePlot('det', 'motor', ax=plt.gca(), marker='o', ls='none')
    RE(scan([det], motor, -1, 1, 50), [lplot, lfplot])

    expected = {'A': 1, 'sigma': 1, 'x0': 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
コード例 #23
0
def create_params(basis,
                  model,
                  nuclei=None,
                  conditions=None,
                  constraints=None):
    """TODO"""

    fnames_k, params_k = create_params_k(model=model, conditions=conditions)
    fnames_lr, params_lr = create_params_lr(basis, conditions, nuclei)

    params_lr = set_thermal_factors(fnames_lr, params_lr, nuclei)

    if constraints == "hn_ap":
        fnames_lr, params_lr = set_hn_ap_constraints(fnames_lr,
                                                     params_lr,
                                                     nuclei=nuclei,
                                                     conditions=conditions)

    if constraints == "nh":
        fnames_lr, params_lr = set_nh_constraints(fnames_lr, params_lr)

    fnames = dict(**fnames_k, **fnames_lr)

    # hack to add parameters depending on parameters not added yet
    params = lf.Parameters()
    params.add_many(*(lf.Parameter(fname) for fname in fnames.values()))
    params.update(params_lr)
    params.update(params_k)

    return fnames, params
コード例 #24
0
def test_live_fit_multidim(fresh_RE):
    RE = fresh_RE

    try:
        import lmfit
    except ImportError:
        raise pytest.skip('requires lmfit')

    motor1._fake_sleep = 0
    motor2._fake_sleep = 0
    det4.exposure_time = 0

    def gaussian(x, y, A, sigma, x0, y0):
        return A * np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))

    model = lmfit.Model(gaussian, ['x', 'y'])
    init_guess = {
        'A': 2,
        'sigma': lmfit.Parameter('sigma', 3, min=0),
        'x0': -0.2,
        'y0': 0.3
    }
    cb = LiveFit(model,
                 'det4', {
                     'x': 'motor1',
                     'y': 'motor2'
                 },
                 init_guess,
                 update_every=50)
    RE(outer_product_scan([det4], motor1, -1, 1, 10, motor2, -1, 1, 10, False),
       cb)

    expected = {'A': 1, 'sigma': 1, 'x0': 0, 'y0': 0}
    for k, v in expected.items():
        assert np.allclose(cb.result.values[k], v, atol=1e-6)
コード例 #25
0
def test_live_fit_plot(RE, hw):
    try:
        import lmfit
    except ImportError:
        raise pytest.skip("requires lmfit")

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0)**2 / (2 * sigma**2))

    model = lmfit.Model(gaussian)
    init_guess = {
        "A": 2,
        "sigma": lmfit.Parameter("sigma", 3, min=0),
        "x0": -0.2,
    }
    livefit = LiveFit(model,
                      "det", {"x": "motor"},
                      init_guess,
                      update_every=50)
    lfplot = LiveFitPlot(livefit, color="r")
    lplot = LivePlot("det", "motor", ax=plt.gca(), marker="o", ls="none")
    RE(scan([hw.det], hw.motor, -1, 1, 50), [lplot, lfplot])
    expected = {"A": 1, "sigma": 1, "x0": 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
コード例 #26
0
def test_repr():
    """Tests for the __repr__ method."""
    par = lmfit.Parameter(name='test', value=10.0, min=0.0, max=20.0)
    assert par.__repr__() == "<Parameter 'test', value=10.0, bounds=[0.0:20.0]>"

    par = lmfit.Parameter(name='test', value=10.0, vary=False)
    assert par.__repr__() == "<Parameter 'test', value=10.0 (fixed), bounds=[-inf:inf]>"

    par.set(vary=True)
    par.stderr = 0.1
    assert par.__repr__() == "<Parameter 'test', value=10.0 +/- 0.1, bounds=[-inf:inf]>"

    par = lmfit.Parameter(name='test', expr='10.0*2.5')
    assert par.__repr__() == "<Parameter 'test', value=-inf, bounds=[-inf:inf], expr='10.0*2.5'>"

    par = lmfit.Parameter(name='test', brute_step=0.1)
    assert par.__repr__() == "<Parameter 'test', value=-inf, bounds=[-inf:inf], brute_step=0.1>"
コード例 #27
0
ファイル: fit.py プロジェクト: hongliliu/HiGal_SEDfitter
    def __init__(self,
                 tguess=20,
                 bguess=1.75,
                 nguess=1e22,
                 trange=[2.73, 50],
                 brange=[1, 3],
                 nrange=[1e20, 1e25],
                 tfixed=False,
                 bfixed=False,
                 nfixed=False):
        """
        Initialize an SED fitter instance with a set of guesses.  
        The input parameters follow a template that is the same for each
        of temperature, beta, and column.

        Once initialized, `PixelFitter` can be called as a function of
        frequency (Hz), flux (MJy), and error (MJy)


        Parameters
        ----------
        guess : float
            The guessed value for T,N, or beta.  Temperature in Kelvin,
            column in :math:`cm^{-2}`
        range : tuple or list of length 2
            The minimum/maximum values of each parameter
        fixed : bool
            Is the parameter fixed at the guessed value?
        """

        import lmfit
        from collections import OrderedDict

        parlist = [
            (n, lmfit.Parameter(name=n, value=x))
            for n, x in zip(('T', 'beta', 'N'), (tguess, bguess, nguess))
        ]

        parameters = lmfit.Parameters()
        parameters.update(OrderedDict(parlist))
        assert parameters.keys()[0] == 'T'
        assert parameters.keys()[1] == 'beta'
        assert parameters.keys()[2] == 'N'

        parameters['beta'].vary = not bfixed
        parameters['beta'].min = brange[0]
        parameters['beta'].max = brange[1]

        parameters['T'].vary = not tfixed
        parameters['T'].min = trange[0]
        parameters['T'].max = trange[1]

        parameters['N'].vary = not nfixed
        parameters['N'].min = nrange[0]
        parameters['N'].max = nrange[1]

        self.parameters = parameters
コード例 #28
0
ファイル: global_fit.py プロジェクト: krrk/photon-tools
 def _real_params(self, params):
     """
     Generate a Parameters object for each curve
     """
     real = copy(params)
     tied = self._all_tied()
     for param, global_param in self._all_tied().items():
         real[param] = lmfit.Parameter(expr=global_param)
     return real
コード例 #29
0
def test_setup_bounds_and_scale_gradient_methods():
    """Tests for the setup_bounds and scale_gradient methods.

    Make use of the MINUIT-style transformation to obtain the the Parameter
    values and scaling factor for the gradient.
    See: https://lmfit.github.io/lmfit-py/bounds.html

    """
    # situation 1: no bounds
    par_no_bounds = lmfit.Parameter('no_bounds', value=10.0)
    assert_allclose(par_no_bounds.setup_bounds(), 10.0)
    assert_allclose(par_no_bounds.scale_gradient(par_no_bounds.value), 1.0)

    # situation 2: no bounds, min/max set to None after creating the parameter
    # TODO: ideally this should never happen; perhaps use a setter here
    par_no_bounds = lmfit.Parameter('no_bounds', value=10.0)
    par_no_bounds.min = None
    par_no_bounds.max = None
    assert_allclose(par_no_bounds.setup_bounds(), 10.0)
    assert_allclose(par_no_bounds.scale_gradient(par_no_bounds.value), 1.0)

    # situation 3: upper bound
    par_upper_bound = lmfit.Parameter('upper_bound', value=10.0, max=25.0)
    assert_allclose(par_upper_bound.setup_bounds(), 15.968719422671311)
    assert_allclose(par_upper_bound.scale_gradient(par_upper_bound.value),
                    -0.99503719,
                    rtol=1.e-6)

    # situation 4: lower bound
    par_lower_bound = lmfit.Parameter('upper_bound', value=10.0, min=-25.0)
    assert_allclose(par_lower_bound.setup_bounds(), 35.98610843)
    assert_allclose(par_lower_bound.scale_gradient(par_lower_bound.value),
                    0.995037,
                    rtol=1.e-6)

    # situation 5: both lower and upper bounds
    par_both_bounds = lmfit.Parameter('both_bounds',
                                      value=10.0,
                                      min=-25.0,
                                      max=25.0)
    assert_allclose(par_both_bounds.setup_bounds(), 0.4115168460674879)
    assert_allclose(par_both_bounds.scale_gradient(par_both_bounds.value),
                    -20.976788,
                    rtol=1.e-6)
コード例 #30
0
def fitAndPlotBumplessData(y, x, x0, width, fudge = 0.5, ax = [], color = 'r',
						   linestyle = '-'): 
	"""
	fitAndPlotBumplessData:  
		-reduces x-scan data to eliminate bump
		-fits reduced data
		-plots (if axes supplied) fit line
		-returns center of fit's transition
		
	Parameters
    ----------
	y				: y data from scan
	x				: x data from scan
	x0				: estimated half-max from scan
	width			: estimated width of transition from scan
	fudge			: Fudge factor for x-scan data reduction to remove bump 
					  from post-scan fit (in mm).  Defaults to def_fudge
	ax 				: axis object for plotting fit, 
					  Default value is None which suppresses plot
	color			: color of fit line. Defaults to red.
	linestyle 		: string descriptor of linetype for fit line, 
					  Default value is solid line
	"""

	x_reduced_max = x0 + fudge + 0.5*width
	
	xdata = np.asarray(x)
	ydata = np.asarray(y)
	ix = np.where(xdata < x_reduced_max)
	
	x_reduced = xdata[ix]
	y_reduced = ydata[ix]
	
	red_model = lmfit.Model(erfx, missing = 'drop')
	red_guess = {'low': min(y_reduced),
				 'high': max(y_reduced),
				 'wid': lmfit.Parameter('wid', value = width, min=0),
				 'x0': x0}

	params = red_model.make_params(low = min(y_reduced), high = max(y_reduced), 
								   wid = width, x0 = x0)

	redFit = red_model.fit(y_reduced, params, x = x_reduced)
	redFit_x0 = redFit.result.params['x0'].value
	redFit_width = redFit.result.params['wid'].value
	
	#plot new fit
	if ax is not None:
		redFit.plot_fit(ax = ax, data_kws = {'visible':False}, 
						fit_kws={'color': color, 
								 'linestyle' : linestyle},
						init_kws={'visible':False},
						xlabel = 'motorX', ylabel = 'detX')
		ax.set_title(' ')

	return redFit_x0